
Scibian 9 HPC Installation guide

CCN-HPC

Version 1.9, 2018-08-20

Table of Contents

About this document . 1

Purpose . 2

Structure . 3

Typographic conventions . 4

Build dependencies . 5

License . 6

Authors . 7

Reference architecture . 8

1. Hardware architecture . 9

1.1. Networks . 9

1.2. Infrastructure cluster. 10

1.3. User-space cluster . 12

1.4. Storage system . 12

2. External services . 13

2.1. Base services. 13

2.2. Optional services . 14

3. Software architecture . 15

3.1. Overview . 15

3.2. Base Services . 16

3.3. Additional Services. 19

3.4. High-Availability . 20

4. Conventions . 23

5. Advanced Topics . 24

5.1. Boot sequence . 24

5.2. iPXE Bootmenu Generator . 28

5.3. Debian Installer Preseed Generator. 30

5.4. Frontend nodes: SSH load-balancing and high-availability 31

5.5. Service nodes: DNS load-balancing and high-availability . 34

5.6. Consul and DNS integration. 35

5.7. Scibian diskless initrd . 37

Installation procedure. 39

6. Overview. 40

7. Requirements . 41

8. Temporary installation node . 44

8.1. Base installation . 44

8.2. Administration environment . 44

9. Internal configuration repository . 46

9.1. Base directories . 46

9.2. Organization settings . 46

9.3. Cluster directories . 48

9.4. Puppet configuration . 48

9.5. Cluster definition. 49

9.6. Service role . 55

9.7. Authentication and encryption keys . 56

10. Generic service nodes . 62

10.1. Temporary installation services . 62

10.2. First Run. 62

10.3. Second Run . 64

10.4. Base system installation. 64

10.5. Ceph deployment . 66

10.6. Consul deployment. 73

10.7. Temporary installation node sweep . 75

11. Admin node. 76

11.1. Base system. 76

11.2. Administration environmnent . 78

12. Service virtual machines. 79

12.1. Libvirt settings . 79

12.2. Clara configuration . 80

12.3. Virtual machine definitions . 83

12.4. Required virtual machines . 85

13. LDAP Authentication. 87

13.1. Directory replica . 87

13.2. Clients setup. 88

14. Slurm . 90

14.1. Base Configuration. 90

14.2. Shared State Location . 91

14.3. Miscellaneous Tuning . 92

14.4. MariaDB security hardening. 92

14.5. Bootstrap . 93

14.6. Configuration deployment . 94

15. Frontend and compute nodes . 95

15.1. Diskless image generation . 95

15.2. Boot nodes . 100

16. Optional features . 102

16.1. Tuning . 102

16.2. Firewall . 102

16.3. Kerberos . 102

16.4. Internal APT repository. 102

16.5. Storage Multipath . 102

16.6. Monitoring. 102

16.7. Metrics . 102

16.8. HPCStats . 102

16.9. Slurm WCKeys . 102

16.10. Slurm-web REST API. 103

16.11. NFS High-Availability . 103

16.12. Slurm power management . 103

Bootstrap procedures. 105

17. LDAP bootstrap . 106

18. MariaDB/Galera bootstrap . 108

19. SlurmDBD bootstrap. 109

20. Ceph . 110

20.1. Ceph Deploy. 110

20.2. Mon . 110

20.3. OSD . 110

20.4. CephFS . 111

21. NFS HA bootstrap. 112

Production procedures . 113

22. MAC address change . 114

23. Password/keys changes . 115

23.1. Root password . 115

23.2. Root SSH key . 115

23.3. SSH host keys . 115

23.4. Eyaml keys . 116

23.5. Internal repository encoding key . 117

23.6. Replication account password . 119

23.7. Monitoring certificates . 119

23.8. Munge key . 119

23.9. Repo keyring . 120

23.10. MariaDB users . 121

24. Administration node re-installation . 122

25. Service node re-installation . 123

26. Network Boot and Installation Tuning . 125

26.1. iPXE ROM . 125

26.2. Bootmenu Entries. 125

26.3. Debian Installer Environment . 126

26.4. Alternate Partition Schemas. 127

27. Frontend access . 129

27.1. Draining . 129

28. NFS HA. 130

28.1. Starting a node. 130

28.2. Manual Fail Over . 130

29. Services . 131

29.1. Packages Caching purge . 131

30. Virtual Machines . 132

30.1. Deleting a Virtual Machine . 132

About this document

© Scibian Projet — v1.9, 2019-04-05

Preface | 1

Purpose

The present document presents the reference architecture, the bootstrap and installation

procedures of an HPC system called Scibian HPC.

The main goal is to provide exhaustive information regarding the configuration and system

settings based on the needs expressed by users. This information may be useful to business

and technical stakeholders, as well as to all members of the scientific computing community at

EDF.

© Scibian Projet — v1.9, 2019-04-05

2 | Purpose

Structure

This document is divided into five chapters:

1. About this document: refers to the present chapter.

2. Reference architecture: gives an overview of the software and hardware architecture of a

Scibian HPC system. It also includes a detailed description of the boot sequence of the HPC

System and some other advanced topics.

3. Installation procedures: describes how to install the Puppet-HPC software stack used to

configure the administration and generic nodes of the HPC system. This chapter also

explains how to use Ceph for sharing the configuration files across all the nodes and how to

handle the virtual machines providing all the services needed to operate the HPC system.

4. Bootstrap procedures: contains all the procedures to boostrap all the crucial services for the

Scibian HPC system: LDAP, Ceph, MariaDB with Galera, SlurmDBD, etc.

5. Production procedures: contains all the technical procedures to follow for regular operations

occuring during the production phase of the supercomputer. This notably includes changing

any encryption or authentication key, changing passwords, reinstalling nodes, etc.

© Scibian Projet — v1.9, 2019-04-05

Structure | 3

Typographic conventions

The following typographic conventions are used in this document:

• Files or directories names are written in italics: /admin/restricted/config-puppet.

• Hostnames are written in bold: genbatch1.

• Groups of hostnames are written using the nodeset syntax from clustershell. For example,

genbatch[1-2] refers to the servers genbatch1 and genbatch2.

• Commands, configuration files contents or source code files are set off visually from the

surrounding text as shown below:

$ cp /etc/default/rcS /tmp

© Scibian Projet — v1.9, 2019-04-05

4 | Typographic conventions

https://github.com/cea-hpc/clustershell/wiki/nodeset

Build dependencies

On a Scibian 9 system, these packages must be installed to build this documentation:

• asciidoctor >= 0.1.4

• asciidoctor-scibian-tpl-latex

• inkscape

• rubber

• texlive-latex-extra

© Scibian Projet — v1.9, 2019-04-05

Build dependencies | 5

License

Copyright © 2014-2018 EDF S.A.

CCN-HPC <dsp-cspito-ccn-hpc@edf.fr>

This document is governed by the CeCILL license under French law and
abiding by the rules of distribution of free software. You can use,
modify and/ or redistribute the document under the terms of the
CeCILL license as circulated by CEA, CNRS and INRIA at the following
URL "http://www.cecill.info".

As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the document's author, the holder of the
economic rights, and the successive licensors have only limited
liability.

In this respect, the user's attention is drawn to the risks associated
with loading, using, modifying and/or developing or reproducing the
document by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the document's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.

The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.

Full license terms and conditions can be found at

http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.html.

© Scibian Projet — v1.9, 2019-04-05

6 | License

mailto:dsp-cspito-ccn-hpc@edf.fr
http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.html

Authors

In alphabetical order:

• Benoit Boccard

• Ana Guerrero López

• Thomas Hamel

• Camille Mange

• Rémi Palancher

• Cécile Yoshikawa

© Scibian Projet — v1.9, 2019-04-05

Authors | 7

Reference architecture
This chapter gives an overview of the software and hardware architecture of a Scibian HPC

system. It also includes a detailed description of the boot sequence of the HPC System and

some other advanced topics.

© Scibian Projet — v1.9, 2019-04-05

8 | Authors

Chapter 1. Hardware architecture

The following diagram represents at a high-level a simple typical hardware architecture

supported on Scibian HPC clusters:

Figure 1. Scibian HPC cluster hardware typical architecture

1.1. Networks

The minimal network configuration supported on Scibian HPC clusters consists of two physically

separated networks:

• The WAN network, an Ethernet based network with L3 network routers which connect the

IP networks of the HPC cluster to the organization network.

• The backoffice network used for basically every other internal network communications:

deployment, services, administrator operations, etc. It must be an Ethernet network with

dedicated (level 2 or more) switches.

For performance reasons with distributed computing, HPC clusters generally have a third low-

latency network. It is used for both I/O to the main storage system and distributed computing

communications (typically MPI messages) between compute nodes. The hardware technologies

of this network may vary upon performance requirements but it generally involves high

© Scibian Projet — v1.9, 2019-04-05

1.1. Networks | 9

bandwidth (10+GB/s) and low latency technologies such as InfiniBand, Omni-Path or 10GB

Ethernet. In the absence of dedicated low-latency network, the backoffice network is also used

for central storage system I/O and distributed computing communications.

It is recommended to split the backoffice network with four VLAN dedicated to the following

groups of network interfaces:

• The system interfaces of the infrastructure cluster nodes,

• The system interfaces of the userspace cluster nodes,

• The management interfaces of the infrastructure cluster nodes (BMC [1: Baseboard

Management Card]) and hardware equipments (switches, storage controllers, CMC [2:

Chassis Management Card], etc),

• The management interfaces of the userspace cluster nodes.

In this setup, it is recommended to route IP subnetworks between the VLAN with L3 switche(s)

on the backoffice network.

This setup has significant advantages both in terms of reliability and security:

• It significantly reduces the size of Ethernet broadcast domains which notably increases

DHCP reliability and drops Ethernet switches load.

• It makes easier to restrict access to the infrastructure cluster and hardware equipments,

notably in case of evil user attack.

• It gives the possibilty to fully adopt the areas feature of Puppet-HPC.

NOTE
For more details about the areas feature, please refer to Puppet-HPC

Reference Documentation (chapter Software Architecture, section Cluster

Definition).

1.2. Infrastructure cluster

The infrastructure cluster is composed by two types of nodes: the admin node and the generic

service nodes.

The admin node is the access node for administrators and the central point of administrative

operations. All common administrative actions are performed on this node. It does not run any

intensive workloads, just simple short-lived programs and it does not need to be very powerful. It

does not store sensible data nor run critical services, so it does not need to be very reliable

either. Example of hardware specifications:

CPU 1 x 4 cores

RAM 8GB ECC

© Scibian Projet — v1.9, 2019-04-05

10 | 1.2. Infrastructure cluster

Network • 1 x 1GB bonding on backoffice network

• 1 x 1GB bonding on WAN network

• 1 link on low-latency network

Storage 2 x 300GB RAID1 SATA hard disk

PSU Non-redundant

The generic service nodes run all critical infrastructure services (within service virtual

machines) and manage all production administrative data. Scibian HPC requires a pool from 3

(minimum) to 5 (recommended) generic service nodes. The pool works in active cluster mode,

the load is balanced with automatic fail-over. All generic service nodes of a cluster must be fairly

identical for efficient load-balancing.

The generic service nodes manage the production data into a distributed object-storage system.

It is highly recommended that the nodes have a dedicated block storage device for this purpose.

The workload is mostly proportional to the number of compute nodes but the generic service

nodes must be quite powerful to comfortably handle load peaks happening during some

operations (ex: full cluster reboot). Also, since services are run into virtual machines, a fairly

large amount of RAM is required. Services can generate a lot of traffic on the backoffice

network, it is relevant to provide a network adapter with high bandwidth. Even though high-

availability is ensured at the software level with automatic fail-over between generic service

nodes, it is nevertheless recommended to get hardware redundancy on most devices of the

generic service nodes to avoid always risky and hazardous service migrations as much as

possible. Example of hardware specifications:

CPU 2 x 16 cores

RAM 64GB ECC

Network • 2 x 10GB bonding on backoffice network

• 2 x 1GB bonding on WAN network

• 1 link on low-latency network

Storage • 2 x 300GB RAID1 SATA hard disk for host

• 2 x 1TB SSD SAS or NVMe PCIe for object-storage system

PSU Redundant

All physical nodes must be connected to all three physical networks. There are virtual bridges

on the host of the generic service nodes connected to the WAN and backoffice networks. The

service virtual machines have connections to the virtual bridges upon their hosted service

© Scibian Projet — v1.9, 2019-04-05

1.2. Infrastructure cluster | 11

requirements.

1.3. User-space cluster

The user-space cluster is composed of frontend nodes and compute nodes.

The nodes of the user-space cluster are deployed with a diskless live system stored in RAM. It

implies that, technically speaking, the nodes do not necessarily need to have local block storage

devices.

The frontend nodes are the access hosts for users so they must be connected to all three

physical networks. It is possible to have multiple frontend nodes in active cluster mode for load-

balancing and automatic fail-over. The exact hardware specifications of the frontend nodes

mostly depend on user needs and expectations. Users may need to transfer large amount of

data to the cluster, it is therefore recommended to provide high-bandwidth network adapters for

the WAN network. These nodes can also be designed to compile computational codes and in

this case, they must be powerful in terms of CPU, RAM and local storage I/O.

The compute nodes run the jobs so they must provide high performances. Their exact

hardware specifications totally depend on user needs. They must be connected to both the

backoffice and the low-latency networks.

1.4. Storage system

The storage system is designed to host user data. It provides one or several shared POSIX

filesystems. The evolved storage technologies depend on user needs ranging from a simple

NFS NAS to a complex distributed filesystem such as Lustre or GPFS with many SAN and I/O

servers.

© Scibian Projet — v1.9, 2019-04-05

12 | 1.3. User-space cluster

Chapter 2. External services

A Scibian HPC cluster is designed to be mainly self contained and to continue running jobs

even if it is cut off from the rest of the organization network. There is some limits to this though

and some external services are needed. Critical external services are replicated inside the

cluster though, to avoid losing availability of the cluster if the connection to external service is

cut.

2.1. Base services

2.1.1. LDAP

The reference cluster architecture provides a highly available LDAP service, but it is only meant

as a replica of an external LDAP service. The organization must provide an LDAP service with

suitable replica credentials.

Only the LDAP servers (Proxy virtual machines) connect to these servers.

2.1.2. NTP

The generic service nodes are providing NTP servers for the whole cluster. Those servers must

be synchronized on an external NTP source. This could be an organization NTP or a public one

(eg. spool.ntp.org).

Only the NTP servers (Generic Service nodes) connect to these servers.

2.1.3. Package repositories

The normal way for a Scibian HPC Cluster to handle package repositories (APT) is to provide a

proxy cache to organization or public distribution repositories. Alternatively, it is possible to

mirror external repositories on the cluster (with clara and Ceph/S3).

Proxy cache needs less maintenance and is the preferred solution. Local mirrors can be used

when reliable connection to external repositories is unreliable.

Only the Proxy Cache servers (Generic Service nodes) connect to these servers. In the mirror

mode, only the admin node uses them.

2.1.4. DNS

External DNS service is not strictly necessary but is hard to not configure if the cluster must use

organization or public services (License servers, NAS…).

The external DNS servers are configured as recursive in the local DNS server configuration.

© Scibian Projet — v1.9, 2019-04-05

2.1. Base services | 13

Only the DNS servers (Generic Service nodes) connect to these servers.

2.2. Optional services

2.2.1. NAS

It is frequent to mount (at least on the frontend nodes) an external NAS space to copy data in

and out of the cluster.

2.2.2. Graphite

In the reference architecture all system metrics collected on the cluster (by collectd) are pushed

to an external graphite server. This is usually relayed by the proxy virtual machines.

2.2.3. InfluxDB

In the reference architecture all jobs metrics collected on the cluster are pushed to an external

InfluxDB server. This is usually relayed by the proxy virtual machines.

2.2.4. HPCStats

HPCStats is a tool that frequently connects to the frontend as a normal user to launch job. It

also connects to the SlurmDBD database to get batch job statistics. The database connection

needs a special NAT configuration on the Proxy virtual machines.

2.2.5. Slurm-Web Dashboard

The Slurm-Web Dashboard aggregates data coming from multiple clusters in the same web

interface. To get those data, the client connect to an HTTP REST API that is hosted on the

Proxy virtual machines.

© Scibian Projet — v1.9, 2019-04-05

14 | 2.2. Optional services

Chapter 3. Software architecture

3.1. Overview

3.1.1. Functions

The software configuration of the cluster aims to deliver a set of functions. Functions can rely on

each other, for example, the disk installer uses the configuration management to finish the post-

install process.

The main functions provided by a Scibian HPC cluster are:

• Configuration Management, to distribute and apply the configuration to the nodes

• Disk Installer, to install an OS from scratch on the node disks through the network

• Diskless Boot, to boot a node with a live diskless OS through the network

• Administrator Tools, tools and services used by the system administrator to operate the

cluster

• User Tools, tools and services used by end users

The Scibian HPC Cluster will use a set of services to deliver a particular function. If a cluster

can provide Configuration Management and a Disk Installer, it is able to operate even if it

cannot do something useful for the users. These two core functions permit to create a self

sufficient cluster that will be used to provide other functions.

3.1.2. Services

The software services of the cluster are sorted into two broad categories:

• Base Services, necessary to provide core functions: install and configure a physical or

virtual machine

• Additional Services, to boot a diskless (live) machine, provide all end user services (batch,

© Scibian Projet — v1.9, 2019-04-05

3.1. Overview | 15

user directory, licenses…), and system services not mandatory to install a machine

(monitoring, metrics…)

The Base Services run on a set of physical machines that are almost identical, those hosts are

called Service Nodes. The services are setup to work reliably even if some of the service

nodes are down. This means that a service node can be re-installed by other active service

nodes.

The Additional Services can be installed on a set of other hosts that can be either physical or

virtual. VMs (Virtual Machines) are usually used because those services do not need a lot of

raw power and the agility provided by virtual machines (like live host migration) are often an

advantage.

If the cluster is using virtualized machines for the Additional Services, the service nodes must

also provide a consistent virtualization platform (storage and hosts). In the reference

architecture, this is provided with Ceph RBD and Libvirtd running on service nodes.

A particular service runs on service nodes even if it is not mandatory for Disk Installer or Config

Management: the low-latency network manager (Subnet Manager for InfiniBand, Fabric

Manager for Intel Omni-Path). This exception is due to the fact that this particular service needs

raw access to the low-latency network.

In the Puppet configuration, services are usually associated with profiles. For example, the

puppet configuration configures the DNS Server service with the profile:

profiles::dns::server.

3.2. Base Services

3.2.1. Infrastructure

Infrastructure-related services provide basic network operations:

• DHCP and TFTP for PXE Boot

• DNS servers, with forwarding for external zones

• NTP servers, synchronized on external servers

These services are configured the same way and running on each service nodes.

3.2.2. Consul

Consul is a service that permits to discover available services in the cluster. Client will query a

special DNS entry (xxx.service.virtual) and the DNS server integrated with Consul will

return the IP address of an available instance.

© Scibian Projet — v1.9, 2019-04-05

16 | 3.2. Base Services

3.2.3. Ceph

Ceph provides an highly available storage system for all system needs. Ceph has the advantage

to work with internal storage on service nodes. It does not require a storage system shared

between servers (NAS or SAN).

Ceph provides:

• A Rados Block Device (RBD) that is used to store Virtual Machines disk images

• A Rados GateWay to provide storage for configuration management, Amazon S3 compatible

REST API for write operations and plain HTTP for read.

• A Ceph FS that can provide a POSIX filesystem used for Slurm Controller state save

location

A Ceph cluster is made of four kinds of daemons. All generic service nodes run the following

daemons:

• OSD, Object Storage Daemons actually holding the content of the ceph cluster

• RGW, Rados GateWay (sometimes shortened radosgw) exposing an HTTP API like S3 to

store and retrieve data in Ceph

Two other kind of service are only available on three of the generic service nodes:

© Scibian Projet — v1.9, 2019-04-05

3.2. Base Services | 17

• MON, Monitoring nodes, this is the orchestrator of the ceph cluster. A quorum of two active

mon nodes must be maintained for the cluster to be available

• MDS, MetaData Server, only used by CephFS (the POSIX implementation above ceph). At

least one must always be active.

With this configuration, any server can be unavailable. As long as at least two servers holding

critical services are available, the cluster might survive losing another non-critical server.

3.2.4. Libvirt/KVM

Service nodes are also the physical hosts for the Virtual Machines of the cluster. Libvirt is used

in combination with QEMU/KVM to configure the VMs. A Ceph RBD pool is used to store the

image of the VMs. With this configuration, the only state on a service node is the VM definition.

Figure 2. How the service machines, ceph and vm interact

Integration with Clara makes it easy to move VMs between nodes.

3.2.5. HTTP secret and boot

The process to boot a node needs a configuration obtained through HTTP and computed by a

CGI (in Python). This is hosted on the service nodes and served by Apache. This is also used to

serve files like the kernel, initrd and pre-seeded configuration.

A special Virtual Host on the Apache configuration is used to serve secrets (Hiera-Eyaml keys).

This VHost is configured to only serve the files on a specific port. This port is only accessible if

the client connects from a port below 1024 (is root), this is enforced by a Shorewall rule.

© Scibian Projet — v1.9, 2019-04-05

18 | 3.2. Base Services

3.2.6. APT proxy

There is no full repository mirror on the cluster. APT is configured to use a proxy that will fetch

data from external repositories and cache it. This permits to have always up-to-date packages

without overloading external repositories and without having to maintain mirror sync (internally

and externally).

3.2.7. Logs

Logs from all nodes are forwarded to a Virtual IP address running on the service nodes. The

local rsyslog daemon will centralize those logs and optionally forward the result to an external

location.

3.2.8. Low-latency network manager

The Low-latency network manager (InfiniBand Subnet Manager or Intel Omni-Path Fabric

Manager) is not mandatory to achieve the feature set of Base Services (Configuration

Management and Disk Installation) but it must run on a physical machine, so it is grouped with

the Base Services to run on the service nodes.

3.2.9. NFS HA Service

A NFS HA Service can serve two purpose:

• Shared state for servicing using Posix to share their state (like SlurmCtld) when CephFS

does not provided sufficient performance

• Shared storage for the users if a distributed file system like GPFS or Lustre is not used (only

works for smaller cluster sizes)

The NFS HA Service is provided with a Keepalived setup.

3.3. Additional Services

3.3.1. LDAP

There is no standalone LDAP servers configured. The servers are replica from an external

directory. This means that both are configured independently and are accessed only for read

operations.

If the organization uses Kerberos, all Kerberos requests and password checks are done directly

by the external Kerberos server.

© Scibian Projet — v1.9, 2019-04-05

3.3. Additional Services | 19

3.3.2. Bittorrent

Diskless image files are downloaded by the nodes with the BitTorrent protocol. The cluster

provides a redundant tracker service with OpenTracker and two server machines are configured

to always seed the images.

An Apache server is used to serve the torrent files for the diskless images (HTTP Live).

3.3.3. Slurm

Slurm provides the job management service for the cluster. The controller service (SlurmCtld)

runs in an Active/Passive configuration on a pair of servers (batch nodes). The state is shared

between the controller nodes. This can be achieved with a CephFS mount or with an NFS HA

server. CephFS does not permit to support a large number (thousands) of jobs yet.

The SlurmDBD service also runs on these two servers.

3.3.4. MariaDB/Galera

SlurmDBD uses a MySQL like database to store accounting information and limits. On Scibian

HPC Clusters this is provided by a MariaDB/Galera cluster which provides an Active/Active SQL

server compatible with MySQL.

This cluster is usually co-located with SlurmDBD service and Slurm Controllers (batch nodes).

3.3.5. Relays

The Additional Services include a set of relay services to the outside of the cluster for:

• Email (Postfix Relay)

• Network (NAT configured by Shorewall)

• Metrics (Carbon C Relay)

3.3.6. Monitoring

Cluster monitoring is done by Icinga2, the cluster is integrated inside an organization Icinga

infrastructure. The cluster hosts a redundant pair of monitoring satellites that checks the nodes.

The monitoring master is external to the cluster.

3.4. High-Availability

All services running on the cluster should be highly available (HA). Some services not critical for

normal cluster operation can be not highly available, but this should be avoided if possible.

© Scibian Projet — v1.9, 2019-04-05

20 | 3.4. High-Availability

The following section lists the different techniques used to achieve high-availability of the cluster

services.

3.4.1. Stateless

Stateless services are configured the same way on all servers and will give the same answer to

all requests. These services include:

• DHCP

• TFTP

• NTP

• DNS

• LDAP Replica

• HTTP Secret

• HTTP Boot

• HTTP Live

• Ceph RadosGW

• APT Proxy

• Carbon Relay

• Bittorrent Tracker

• Bittorrent Seeder

• SMTP Relay

Clients can provide a list of potential servers that will be tried in turn. If the client do not

automatically accept multiple servers, it is possible to use the Consul service to get a DNS entry

(xxx.service.virtual) that will always point to an available instance of the service.

As a last resort and for services that do not need Active/Active (Load Balancing) capabilities, it

is possible to use a Virtual IP address (VIP). HTTP Live and Carbon Relay uses this technique.

3.4.2. Native Active/Active

Some services have native internal mechanisms to share states between the servers.

Contacting any server will have the same effect on the state of the service, or the service has an

internal mechanism to get the right server. These services behave this way:

• Ceph Rados

• MariaDB/Galera

• Consul

© Scibian Projet — v1.9, 2019-04-05

3.4. High-Availability | 21

3.4.3. Native Active/Passive

Services that have only one active server at any time, but the mechanism to select the active

server is internal to the service. This means all servers are launched in the same way and not

by an external agent like Keepalived or Pacemaker/Corosync. Services using this technique are:

• Ceph MDS (Posix CephFS server)

• Slurm Controller

• Omni-Path Fabric Manager or InfiniBand Subnet Manager

3.4.4. Controlled Active/Passive

The service can only have one active server at any one time and this failover must be controlled

by an external service. On the current configuration the only service requiring this setup is:

• NFS HA Server

© Scibian Projet — v1.9, 2019-04-05

22 | 3.4. High-Availability

Chapter 4. Conventions

In order to restrain the complexity of the configuration of a Scibian HPC cluster, some naming

and architecture conventions have been defined. Multiple components of the software stack

expect these conventions to be followed in order to operate properly. These conventions are

actually rather close to HPC cluster standards, then they should not seem very constraining.

• The operating system short hostname of the nodes must have the following format:

<prefix><role><id>. This is required by the association logic used in Puppet-HPC to

map a node to its unique Puppet role. This point is fully explained in the role section of

Puppet-HPC reference documentation.

• The FQDN [3: Fully-Qualified Domain Name] hostnames of the nodes must be similar to

their network names on the backoffice network. In other words, the IP address resolution on

the cluster of the FQDN hostname of a node must return the IP address of this node on the

backoffice network.

© Scibian Projet — v1.9, 2019-04-05

Chapter 4. Conventions | 23

Chapter 5. Advanced Topics

5.1. Boot sequence

5.1.1. Initial common steps

The servers of the cluster can boot on their hard disks or via the network, using the PXE

protocol. In normal operations, all service nodes are installed on hard disks, and all nodes of the

userspace (compute and frontend nodes) use the network method to boot the diskless image.

A service node can use the PXE method when it is being installed. The boot sequence between

the power on event on the node and the boot of the initrd is identical regardless of the system

booted (installer or diskless image).

The steps of the boot sequence are described on the diagram below:

When a node boots on its network device, after a few (but generally time-consuming) internal

checks, it loads and runs the PXE ROM stored inside the Ethernet adapter. This ROM first

sends a DHCP request to get an IP address and other network parameters. The DHCP server

gives it an IP address alongside the filename parameter. This filename is the file the PXE ROM

downloads using the TFTP protocol. This protocol, which is rather limited and unreliable is used

here because the PXE ROM commonly available in Ethernet adapters only supports this

network protocol.

The file to download depends on the type of nodes or roles. On Scibian HPC clusters when

using the Puppet-HPC software stack, the required filename for the current node is set in Hiera

© Scibian Projet — v1.9, 2019-04-05

24 | 5.1. Boot sequence

in the boot_params hash. If not defined in this hash, the default filename is undionly.kpxe

which is actually the PXE chainloaded version of iPXE for legacy BIOS systems. This filename

can be altered to support specific node settings such as virtual machine and nodes booting in

UEFI mode.

iPXE is open source network boot software with many advanced features (not available in NIC

PXE ROM) such scripting/menu support, HTTP and DNS protocols support and many more.

This way, it is used as a workaround to hardware PXE ROM limitations.

The virtual machines boot like any other node, except QEMU uses iPXE as the PXE

implementation for its virtual network adapters. This means that the virtual machines go directly

to this step.

The iPXE bootloader must perform another DHCP request since the IP settings are lost when

the bootloader is loaded. The DHCP server is able to recognize this request originates from an

iPXE ROM. In this case, it sets the filename parameter with an HTTP URL to a Python CGI

script bootmenu.py.

The iPXE bootloader sends the GET HTTP request to this URL. In this request, it also adds to

the parameters its hostname as it was given by the DHCP server.

On the HTTP server side, the Python CGI script bootmenu.py dynamically generates an iPXE

boot menu for the node, with all entries available on the cluster and the default entry set

according to node settings. Please refer to the iPXE Bootmenu Generator section for detailed

explanations about this script.

Without any action from the administrator, iPXE waits for the menu 3 seconds timeout, then

automatically selects and loads the node default boot entry set by the CGI script.

5.1.2. Disk installation

Here is the sequence diagram of a Scibian server installation on disk, right after the PXE boot

common steps:

© Scibian Projet — v1.9, 2019-04-05

5.1. Boot sequence | 25

http://ipxe.org

The iPXE ROM downloads the Linux kernel and the initrd archive associated with the boot menu

entry. The kernel is then run with all the parameters given in the menu entry.

The initrd archive contains the Debian Installer program. This program starts by sending a new

DHCP request to get an IP address. Then, it downloads the Debian installer preseed file located

at the URL found in the `url ` kernel parameter. This preseed file contains all the answers to the

questions asked by the Debian Installer program. This way, the installation process is totally

automated and does not require any interaction from the administrator.

By default on Scibian HPC clusters, this URL is directed to a Python CGI script

preseedator.py which dynamically generates the preseed file for the node given in

parameter. Please refer to Debian Installer Preseed Generator section for detailed explanations

about this script.

During the installation, many Debian packages are retrieved from Debian repositories.

At the end of the installation, Debian Installer runs the commands set in the late_command

parameter of the preseed file. On Scibian HPC clusters, this parameter is used to run the

following steps:

• Download through HTTP the hpc-config-apply script,

• Run hpc-config-apply inside the chroot environment of the newly installed system.

Detailed functionning of the hpc-config-apply script is not described here, but it involves:

• downloading and installing additional Debian packages depending on the node role,

© Scibian Projet — v1.9, 2019-04-05

26 | 5.1. Boot sequence

• executing various types of software

• and writing various configuration files on the installed system.

Please refer to hpc-config-apply(1) man page for a full documentation on how to use this

script.

Finally, when the execution of the commands are over, the server reboots.

Once the servers are installed, they are configured through IPMI with Clara to boot on their disk

devices first. Please refer to Clara documentation for further details.

5.1.3. Diskless boot

Here is the sequence diagram of the boot process for diskless nodes, right after the PXE boot

common steps:

The iPXE bootloader downloads the Linux kernel and the initrd image defined within the default

boot menu entry and runs them with the provided parameters. Among these parameters, there

are notably:

• fetch whose value is an HTTP URL to a torrent file available on the HTTP server of the

supercomputer,

• cowsize whose value is the size of the ramfs filesystem mounted on /lib/live/mount/overlay,

• disk_format if this parameter is present the device indicated is formatted on node boot,

© Scibian Projet — v1.9, 2019-04-05

5.1. Boot sequence | 27

https://github.com/edf-hpc/puppet-hpc/blob/master/doc/manpages/hpc-config-apply.md
https://github.com/edf-hpc/puppet-hpc/blob/master/doc/manpages/hpc-config-apply.md

• disk_raid if this parameter is present a software raid is created with the parameters

indicated on node boot.

Within the initrd images, there are several specific scripts that come from live-boot, live-

torrent and specific Scibian Debian packages. Please refer to the following sub-section

Advanced Topics, Generating diskless initrd for all explanations about how these scripts have

been added to the initramfs image.

These scripts download the torrent file at the URL specified in the fetch parameter, then they

launch the ctorrent BitTorrent client. This client extracts from the torrent file the IP address of

the BitTorrent trackers and the names of the files to download using the BitTorrent protocol.

There is actually one file to download, the SquashFS image, that the client will download in P2P

mode by gathering small chunks on several other nodes. Then, once the file has been fully

retrieved, the image is mounted after executing some preliminary tasks like formatting the disk

or setting up a raid array if it has been indicated in the kernel options passed by the boot menu.

Then, the real init system is started and it launches all the system services. One of these

services is hpc-config-apply.service which runs the hpc-config-apply script.

As for the part regarding the installation with a disk, how the hpc-config-apply script works is not

described here. Please refer to hpc-config-apply(1) man page for a full documentation on

this topic.

Finally, the node is ready for production.

5.2. iPXE Bootmenu Generator

By default on Scibian HPC clusters, the DHCP servers sends as filename to iPXE ROM an

HTTP URL to a Python CGI script bootmenu.py which is a iPXE bootmenu generator.

Optionally, this behaviour can be altered by modifying iscdhcp::bootmenu_url parameter in

Hiera repository.

The Python CGI script bootmenu.py is provided by scibian-hpc-netboot-bootmenu

package.

On the HTTP server side, this script initially parses the nodes boot parameters configuration

YAML file /etc/scibian-hpc-netboot/boot-params.yaml. This file provides all node

specific boot parameters, including ethernet boot device, default OS, media and version, etc.

When looking for a parameter (ex: os), the script first searches into the nodeset sections whose

node is member (ex: node fbcn02 is member of nodeset fbcn[01-10]). If not found, the

parameter is finally read into the defaults section.

The /etc/scibian-hpc-netboot/boot-params.yaml file is deployed by Puppet-HPC

based on the following inputs:

• the default values provided by Puppet-HPC boothttp module within

boot_params_defaults parameter,

© Scibian Projet — v1.9, 2019-04-05

28 | 5.2. iPXE Bootmenu Generator

https://github.com/edf-hpc/puppet-hpc/blob/master/doc/manpages/hpc-config-apply.md
https://github.com/edf-hpc/puppet-hpc/blob/master/doc/manpages/hpc-config-apply.md

• the DNS nameservers and P2P tracker computed by Puppet-HPC bootsystem::server

profile,

• the boot_params hash parameter in Hiera repository.

Then, the script compiles sequentially all the menu entries provided as YAML files in directory

/etc/scibian-hpc-netboot/menu/entries.d. The YAML files must respect the following

format:

<os>:
 <media>:
 <version>:
 label: <label>
 [dir: <dir>]
 initrd: <initrd>
 kernel: <initrd>
 opts: <opts>

Where:

• <os> is the operating system name (ex: scibian9)

• <media> is the symbolic name of a media where the OS is deployed (disk or ram)

• <version> is a symbolic name of an entry version (ex: main or test)

An <os> can contain multiple <media>, a <media> can contain multiple <version>. An entry

is defined by the concatenation of these 3 parameters, ex: scibian9-disk-main. Then, each

entry is defined by the following parameters:

• label: the label of the entry visible in the boot menu

• dir (optional): the subdirectory of kernel and initrd files in the ${base-url} (see below),

default value is empty.

• initrd: the file name of the initrd archive

• kernel: the file name of the Linux kernel

• opts: the arguments given to the Linux kernel

The ${base-url} is a iPXE placeholder defined by the CGI script for every entries. Its value

mainly depends on the media of the entry:

• for disk media, the value is http://<diskinstall_server>/disk/<os>

• for ram media, the value is http://<diskless_server>/<os>

The <*_server> parameters are defined in nodes boot parameters YAML configuration file

/etc/scibian-hpc-netboot/boot-params.yaml.

The parameters of an entry can be templated with all node boot parameters and the OS, media,

version and initrd of the entry. As an example, here is a valid entry:

© Scibian Projet — v1.9, 2019-04-05

5.2. iPXE Bootmenu Generator | 29

scibian9:
 disk:
 main:
 label: Install {{ os }}
 dir: debian-installer/amd64
 initrd: initrd.gz
 kernel: linux
 opts: >
 initrd={{ initrd }}
 url=http://{{ diskinstall_server }}/cgi-bin/scibian-hpc-
netboot/preseedator.py?node=${hostname}
 console={{ console }}
 auto
 interface={{ boot_dev }}
 locale={{ locale }}
 console-keymaps-at/keymap={{ keymap }}
 keyboard-configuration/xkb-keymap={{ keymap }}
 languagechooser/language-name={{ language }}
 netcfg/get_domain={{ domain }}
 netcfg/get_nameservers="{{ nameservers|join(' ') }}"
 netcfg/no_default_route=true
 debian-installer/add-kernel-opts=console={{ console }}
 priority=critical
 scibian-installer

All the parameters between double curly braces (ex: {{boot_dev}}) are dynamically replaced

by node boot parameters. This way, entries can be defined in a generic way.

The YAML entries files in directory /etc/scibian-hpc-netboot/menu/entries.d are

read sequentially. The entries provided in the next files can override entries defined in previous

files. In other words, only the last definition of an entry is considered. As an example, the entry

scibian9-disk-main defined in 0_default.yaml can be overriden in 1_other.yaml.

The scibian-hpc-netboot-menu provides default entries with file 0_default.yaml. All

the entries defined in this file can be overriden with Puppet-HPC by setting the

profiles::bootsystem::menu_entries hash parameter in Hiera repository.

5.3. Debian Installer Preseed Generator

By default on Scibian HPC clusters, the URL provided in the bootmenu entries for the Debian

installer preseed (scibian*-disk-* entries) is actually directed to a Python CGI script

preseedator.py. This behaviour can be altered by overriding the respective menu entries,

please refer to iPXE Bootmenu Generator section for explanations.

This CGI script preseedator.py dynamically generate a preseed for Debian installer for the

node given in parameter. This CGI script is provided by the scibian-hpc-netboot-

preseedator package.

In the first place, the script reads the nodes boot parameters located in file /etc/scibian-

hpc-netboot/boot-params.yaml. Please refer to iPXE Bootmenu Generator section to

understand how this file is built.

© Scibian Projet — v1.9, 2019-04-05

30 | 5.3. Debian Installer Preseed Generator

Then, it parses its YAML configuration file /etc/scibian-hpc-

netboot/installer/installer.yaml. This file basically contains all debian installer

related parameters such as the URL to the APT mirror/proxy and the list of additional

repositories. The content of this file is based on the following inputs:

• the default values provided by Puppet-HPC boothttp module within

installer_options_defaults parameter,

• the list of additional APT repositories computed by Puppet-HPC bootsystem::server

extracted from Hiera in profiles::cluster::apt_sources hash parameter.

• the profiles::bootsystem::installer_options hash parameter in Hiera repository.

Finally, the preseedator.py script generates the preseed based on the template file

/etc/scibian-hpc-netboot/installer/preseed.jinja2. The template is filled with

parameters previously loaded.

The template provides a mechanism to download an external partition schema file from the

installation server (diskinstall_server in boot-params.yaml). The URL directs to an

another Python CGI script partitioner.py. This script is also provided by scibian-hpc-

netboot-preseedator package.

This script searches for a partition schema file in directory /etc/scibian-hpc-

netboot/installer/schemas in the following order:

1. nodes/<node> where <node> is the hostname of the node,

2. roles/<role> where <role> is the role name of the node,

3. common

The first found file is returned by the script. By default, only the common file is provided by the

package. With Puppet-HPC, it is possible to deploy node or role specific schemas by setting the

boothttp::partition_schemas array in Hiera repository.

5.4. Frontend nodes: SSH load-balancing and high-
availability

The frontend nodes offer a virtual IP address on the WAN network that features both an highly-

available and load-balanced SSH service for users to access the HPC cluster. The load-

balancing feature automatically distributes users on all available frontend nodes. This load-

balancing is operated with persistence so that users (based on their source IP address) are

always redirected to the same frontend node in a time frame. Behind the virtual IP address, the

high-availability of the SSH service is also ensured in case of outage on a frontend node. These

load-balancing and high-availability features are ensured by the Keepalived software.

For security reasons, a firewall is also set up on the frontend nodes to control outgoing network

traffic. This firewall service is managed by Shorewall, a high-level configuration tool for Linux

netfilter. Because of all the various network flows involved in Keepalived, it must be tightly

© Scibian Projet — v1.9, 2019-04-05

5.4. Frontend nodes: SSH load-balancing and high-availability | 31

integrated with the firewall rules. The following diagram illustrates both the network principles

behind the high-availability/load-balancing mechanisms and the integration with the software

components of the firewall:

Figure 3. sshd load-balancing HA mechanism with firewall integration

The Keepalived sofware checks all the frontend nodes using the VRRP [4: Virtual Router

Redundancy Protocol] protocol on the WAN network interfaces (purple arrow in the diagram).

This protocol must be allowed in the OUTPUT chain of the firewall so that Keepalived can work

properly.

On the master frontend node, the HA virtual IP address is set on the network interface attached

to the WAN network. The Keepalived software configures the IPVS [5: IP Virtual Server] Linux

kernel load-balancer to redirect new TCP connections with a Round-Robin algorithm. Therefore,

a part of the TCP connections is redirected to the sshd daemon of other frontend nodes

(orange arrow in the diagram). An exception must be specified in the OUTPUT chain of the

firewall to allow these redirected connections.

To perform such redirections, IPVS simply changes the destination MAC address, to set the

address of the real destination frontend, in the Ethernet layer of the first packet of the TCP

connection. However, the destination IP address does not change: it is still the virtual IP

address.

On the slave frontend nodes, the HA virtual IP address is set on the loopback interface. This is

© Scibian Projet — v1.9, 2019-04-05

32 | 5.4. Frontend nodes: SSH load-balancing and high-availability

required to make the kernel accept the redirected packets from the master frontend node

addressed to the virtual IP address. In order to avoid endless loops, the IPVS redirection rules

are disabled on slave frontend nodes or else, packets would be redirected endlessly.

By default, the Linux kernel answers the ARP requests coming from any network device for any

IP address attached to any network device. For example, on a system with two network devices:

eth0 with ip0 and eth1 with ip1, if an ARP request is received for ip1 on eth0, the kernel

positively responds to it, with the MAC address of eth0. Though it is convenient in many cases,

this feature is annoying on the frontend nodes, since the virtual IP address is set on all of them.

Consequently all frontend nodes answer the ARP requests coming from the WAN default

gateway. In order to avoid this behaviour, the net.ipv4.conf.<netif>.arp_ignore and

net.ipv4.conf.<netif>.arp_announce sysctl Linux kernel parameters, where <netif>

is the network interface connected to the WAN network, are respectively set to 1 and 2. Please

refer to the Linux documentation for more details on these parameters and their values:

http://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

The Keepalived software also checks periodically if the sshd service is still available on all

frontend nodes by trying to perform a TCP connection to their real IP addresses on the TCP/22

port (green arrow in the diagram). An exception must be present in the OUPUT chain of the

firewall to allow these connections.

There is an unexplained behaviour in the Linux kernel where the Netfilter conntrack module

considers that new TCP connections redirected by IPVS to the local sshd daemon have an

invalid cstate. This point can be verified with well placed iptable rules using the LOG destination.

This causes the TCP SYN/ACK answer from the sshd to be blocked by the OUTPUT chain

since it considers the connection is new and not related to any incoming connections. To

workaround this annoying behaviour, an exception has been added in the OUTPUT chain of the

firewall to accept connections with a source port that is TCP/22 and a source IP address that is

the virtual IP address. This is not totally satisfying in terms of security but there is no known

easy or obvious way to exploit this security exception from a user perspective for other

purposes.

If a slave frontend node becomes unavailable, Keepalived detects it either with VRRP checks, or

with TCP checks in case only the sshd daemon is crashed. The IPVS rules are changed

dynamically to avoid redirecting new TCP connections to this failing node.

If the master frontend node becomes unavailable, the Keepalived software selects a new master

node within the other frontend nodes. Then, on this new master node, Keepalived restores the

IPVS redirection rules (since they were previously disabled to avoid loops) and moves the virtual

IP address from the loopback interface to the WAN network interface.

If a frontend node is scheduled to be turned of, it is possible to drain it.

© Scibian Projet — v1.9, 2019-04-05

5.4. Frontend nodes: SSH load-balancing and high-availability | 33

http://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

5.5. Service nodes: DNS load-balancing and high-
availability

This diagram gives an overview of the load-balancing and high-availability mechanisms involved

in the DNS service of the Scibian HPC clusters:

Figure 4. DNS service load-balancing and high-availability

On Linux systems, when an application needs to resolve a network hostname, it usually calls

the gethostbyname*() and getaddrinfo() functions of the libc. With a common

configuration of the Name Service Switch (in the file /etc/nsswitch.conf), the libc searches for

the IP address in the file /etc/hosts and then fallbacks to a DNS resolution. The DNS solver

gathers the IP address by sending a request to the DNS nameservers specified in the file

/etc/resolv.conf. If this file contains multiple nameservers, the solver sends the request to the

first nameserver. If it does not get the answer before the timeout, it sends the request to the

second nameserver, and so on . If the application needs another DNS resolution, the solver will

follow the same logic, always trying the first nameserver in priority. It implies that, with this

default configuration, as long as the first nameserver answers the requests before the timeout,

the other nameservers are never requested and the load is not balanced.

This behavior can be slightly altered with additional options in the file /etc/resolv.conf

© Scibian Projet — v1.9, 2019-04-05

34 | 5.5. Service nodes: DNS load-balancing and high-availability

• options rotate: this option tells the libc DNS solver to send requests to all the

nameservers for successive DNS requests of a process. The DNS solver is stateless and

loaded locally for the processes as a library, either as a shared library or statically in the

binary. Therefore, the rotation status is local to a process. The first DNS request of a process

will always be sent to the first nameserver. The rotation only starts with the second DNS

request of a process. Notably, this means that a program which sends one DNS request

during its lifetime, launched n times, will send n DNS requests to the first nameserver only.

While useful for programs with long lifetime, this option can not be considered as an efficient

and sufficient load-balancing technique.

• options timeout:1: this option reduces the request timeout from the default value i.e. 60

seconds to 1 second. This is useful when a nameserver has an outage since many

processes are literally stuck waiting for this timeout when it occurs. This causes many

latency issues. With this option, the libc DNS solver quickly tries the other nameservers and

the side-effects of the outage are significantly reduced.

On Scibian HPC clusters, Puppet manages the file /etc/resolv.conf and ensures these two

options are present. It also randomizes the list of nameservers with the fqdn_rotate()

function of the Puppet stdlib community module. This function randomizes the order of the

elements of an array but uses the fqdn fact to ensure the order stays the same for a node with

a given FQDN. That is, each node will get a different random rotation from this function, but a

given node’s result will be the same every time unless its hostname changes. This prevents the

file content from changing with every Puppet runs. With this function, all the DNS nameservers

are equivalently balanced on the nodes. Combined with the options rotate, it forms an

efficient load-balancing mechanism.

The DNS servers are managed with the bind daemon on the generic service nodes. Each

generic service nodes has a virtual IP address managed by a keepalived daemon and

balanced between all the generic service nodes. The IP addresses of the nameservers

mentioned in the file /etc/resolv.conf on the nodes are these virtual IP addresses. If a generic

service node fails, its virtual IP address is automatically routed to another generic service node.

In combination with options timeout:1, this constitutes a reliable failover mechanism and

ensures the high-availability of the DNS service.

5.6. Consul and DNS integration

This diagram illustrates how Consul and the DNS servers integrate to provide load-balanced

and horizontally scaled network services with high-availability:

© Scibian Projet — v1.9, 2019-04-05

5.6. Consul and DNS integration | 35

Figure 5. Consul, DNS server and services integration

The Consul agent daemon can run in two modes: server and client. The cluster of Consul

servers maintains the state of the cluster using the raft protocol. The clients communicate with

the servers to detect failures using the gossip protocol. Both agents expose the data of the

Consul cluster through a HTTP REST API. On Scibian HPC clusters, the Consul servers run on

the generic service nodes while the admin node runs a client agent.

As explained in the Software architecture section, Consul discovers network services on a pool

of nodes. The services discovered by Consul on Scibian HPC clusters are hosted on the

generic service nodes. Each Consul server is responsible for checking its locally running

services, such as an HTTP server for example. The state being constantly shared by all Consul

agents, every agent is actually able to tell where the services are available. Consul notably

provides a DNS interface. Given a particular virtual hostname referring to a service, Consul can

give the IP addresses of the servers currently running this service.

Consul is not designed to operate as a full DNS server. It listens for incoming requests on an

alternative UDP port for a particular sub-domain virtual.<domain>, where <domain> is

configurable and depends on the cluster.

On the nodes, the clients are configured to connect to services in this particular sub-domain, for

example http.virtual.<domain> for the HTTP service. The DNS requests sent by the

© Scibian Projet — v1.9, 2019-04-05

36 | 5.6. Consul and DNS integration

clients are received by the bind daemon through the virtual IP addresses of the generic service

nodes, as explained in DNS Load-balancing and High-availability section. The DNS bind

daemon is configured to forward the requests on the virtual sub-domain to the local Consul

agent. The Consul agent answers the DNS request with the static IP address of the generic

service nodes running this service, in random order.

In this architecture, both the DNS requests to the Consul servers and the services (eg. HTTP)

requests are load-balanced on all the generic service nodes in high-availability mode. The same

mechanism also applies to APT proxies, Ceph RADOS gateways, and so on.

The Consult utility is installed on the admin node to request the current status of the Consul

cluster. It connects to the REST API of the Consul client running locally and prints the status on

the standard output.

5.7. Scibian diskless initrd

5.7.1. The scibian-diskless-initramfs-config package

This package contains the necessary configuration in order to build an initramfs disk suitable for

Scibian diskless nodes. It depends on the following packages:

• initramfs-tools

• live-torrent

• live-boot

• mdadm

• parted

initramfs-tools

Initramfs-tools is a Debian package that provides tools to create a bootable initramfs for

Linux kernel packages. The initramfs is a compressed cpio archive. At boot time, the kernel

unpacks that archive into RAM, mounts and uses it as the initial root file system. The mounting

of the real root file system occurs in early user space.

live-boot

The live-boot package provides support for live systems. It depends on the live-boot-

initramfs-config package, which is a backend for live-boot in initramfs config. In particular,

it provides the "live" script in /usr/share/initramfs-tools/scripts/live. This script is copied in the

generated initramfs and can download and unpack live system images used as the root

filesystem for diskles nodes.

© Scibian Projet — v1.9, 2019-04-05

5.7. Scibian diskless initrd | 37

https://github.com/edf-hpc/consult/
https://github.com/edf-hpc/consult/

live-torrent

The live-torrent package provides support for BitTorrent downloading for live systems. It

depends on the live-torrent-initramfs-tools package, which provides the ctorrent

binary (a bitorrent client) in the initramfs.

5.7.2. Generating the initramfs

With the packages described above installed on a Scibian system, it is possible to generate an

initramfs able to download the root live system image via the BitTorrent protocol.

On a Scibian HPC cluster, it is recommended to use the Clara tool to generate the root live

system image, and to generate the corresponding initramfs. It is possible to specify in the Clara

configuration file which packages are mandatory in the image before generating the initramfs.

Here is an example of the "images" section of the Clara configuration file:

[images]
files_to_remove=/etc/udev/rules.d/70-persistent-
net.rules,/root/.bash_history,/etc/hostname
etc_hosts=10.0.0.1:service,10.0.0.2:admin1
extra_packages_image=hpc-config-apply,scibian-hpc-compute
packages_initrd=scibian-diskless-initramfs-config

With this configuration, Clara follows these steps to generate the initramfs:

1. Uncompress the squashfs image

2. Chroot in the directory created

3. Install the packages defined by the packages_initrd key in the Clara config file

4. Generate the initramfs

5. Do not re-compress the squashfs image

This method is used to guarantee consistency with the kernel in the squashfs image. It is also

possible to generate an initramfs for an image based on Scibian9 with a machine installed on

Scibian8, for example.

© Scibian Projet — v1.9, 2019-04-05

38 | 5.7. Scibian diskless initrd

Installation procedure
This chapter describes how to install the Scibian HPC cluster software stack on a hardware

infrastructure compliant with the reference architecture. The first section gives a quick overview

of the main steps of the installation process. There are few requirements before starting the

installation, they are listed in the following sections. Then, the successive steps are described in

details. Finally, the chapter ends with the installation documentation of various optional features.

© Scibian Projet — v1.9, 2019-04-05

Chapter 5. Advanced Topics | 39

Chapter 6. Overview

The installation process of a Scibian HPC cluster starts with the administration cluster of the

reference architecture. The administration cluster is composed of the admin node and a pool of

generic services nodes. The generic services nodes run the base services required by all

nodes, then they are the entry point of the installation procedure.

The first generic service node takes the role of the temporary installation in order to install all

the other generic service nodes. When the generic services nodes are fully operational with the

base software services stack, the admin node is installed. Then, the process continues with the

services virtual machines and the set of additional services are installed.

Finally, the frontend and compute nodes of the userspace cluster are deployed and all the

additional services are setup to make the Scibian HPC cluster fully operational.

© Scibian Projet — v1.9, 2019-04-05

40 | Chapter 6. Overview

Chapter 7. Requirements

There are a few requirements before starting up the cluster installation. This section aims to

inventory all of these requirements, with example values.

NOTE

For the sake of simplicity, the examples values are used all along the rest of

the installation procedure documentation in various commands or code

excerpts. These examples values must be replaced with values corresponding

to your environment where appropriate.

Description Example

Cluster name foobar or $CLUSTER

Cluster prefix fb

Network domain name hpc.example.org or
$NETDOMAIN

Remote Git internal configuration repository (cf. note) ssh://forge/hpc-

privatedata

DNS servers • 1.1.1.1

• 2.2.2.2

NTP servers • ntp1.example.org

• ntp2.example.org

SMTP servers smtp.example.org

LDAP server ldap.example.org

Groups of users in LDAP directory • grpusers1

• grpusers2

© Scibian Projet — v1.9, 2019-04-05

Chapter 7. Requirements | 41

Description Example

IP networks (with optional subnetworks) and adressing plan 4 IP networks (without

subnetworks):

• backoffice: 10.1.0.0/24

• management:
10.2.0.0/24

• wan: 10.3.0.0/24

• lowlatency: 10.4.0.0/24

Areas (cf. note) One default area with

backoffice network or $MAIN

All MAC adresses

Network interfaces configuration of all the nodes and

equipments

Please refer to the following

diagram for an example of

generic service network

configuration.

Local block storage configuration of all the nodes For generic services nodes: *

sda for system * sdb for Ceph

NOTE

The deployment of Scibian HPC cluster is mainly based on Puppet-HPC. As

explained in the Software Architecture chapter of Puppet-HPC documentation,

it works in combination with an internal configuration repository containing all

configuration settings and data specific to your organization. This Git

repository does not have to be populated to proceed the installation. If it is

empty, the Internal repository section of this chapter explains how to initialize it

from scratch for Puppet-HPC.

NOTE

The advanced network topologies support on Scibian HPC clusters, including

subnetworks and areas, relies on the features provided by Puppet-HPC stack.

For more details about areas concept and subnetworking possibilities, please

refer to Puppet-HPC Reference Documentation (chapter Software Architecture,

section Cluster Definition).

This diagram represents an exemple network interfaces configuration for the generic services

nodes of a Scibian HPC cluster:

© Scibian Projet — v1.9, 2019-04-05

42 | Chapter 7. Requirements

http://edf-hpc.github.io/puppet-hpc/

Figure 6. Example generic service nodes network interfaces

© Scibian Projet — v1.9, 2019-04-05

Chapter 7. Requirements | 43

Chapter 8. Temporary installation node

The first step of the installation process is to install the first generic service node. This node will

ensure the role of temporary installation node for the other generic service nodes. Before the

admin node is installed, all operations (unless explicitely stated) are realized on this temporary

installation node.

8.1. Base installation

Install Debian 9 Stretch base system using any of the official Debian installation media (CD,

DVD, USB key, PXE server, etc) at your convenience. Configure the network interfaces with

static IP addresses in compliancy with the cluster IP adressing plan. Set the hostname following

the architecture conventions, for example: fbservice1.

Once the node has rebooted on freshly installed system, add the Scibian 8 APT repositories to

the configuration:

echo <<EOF >/etc/apt/sources.list.d/scibian9.list
deb http://scibian.org/repo/ scibian9 main
EOF

Download and enable Scibian repository keyring:

apt-get install --allow-unauthenticated scibian-archive-keyring

Update the packages repositories local database:

apt-get update

Install the following Scibian HPC administration node meta-package:

apt-get install scibian-hpc-admin

8.2. Administration environment

All the files manipulated during the installation process will be placed into a dedicated working

directory. The location of this directory is arbitrary, for example: ~root/install. This directory

will be designated as $ADMIN in the following section of the installation procedure

documentation.

export ADMIN=~root/install
mkdir $ADMIN && cd $ADMIN

© Scibian Projet — v1.9, 2019-04-05

44 | 8.1. Base installation

Clone both Puppet-HPC and internal configuration repositories into this dedicated working

directory:

git clone https://github.com/edf-hpc/puppet-hpc.git
git clone ssh://forge/hpc-privatedata.git

At this stage, the internal repository can be populated with all files and data initially required to

install the cluster.

© Scibian Projet — v1.9, 2019-04-05

8.2. Administration environment | 45

Chapter 9. Internal configuration repository

The internal configuration repository required by Puppet-HPC is designed to be shared upon

multiple clusters in an organization. Then, it has to be initialized only for the first cluster

installation. Its structure and content is fully explained in the Software Architecture chapter of

Puppet-HPC documentation.

This section provides examples configurations snippets to quickstart this internal configuration

repository from scratch.

9.1. Base directories

If the internal configuration repository is fully empty and is initialiazed from scratch, a few base

directories must be created under its root.

IMPORTANT
This step must not be realized if the internal configuration repository is

not empty, typically if it has already been initialized for another cluster.

cd $ADMIN/hpc-privatedata
mkdir files hieradata puppet-config

9.2. Organization settings

Some settings are common to all HPC clusters of an organization, in particular settings

regarding the external services. To avoid duplication of these settings in all HPC cluster

configurations, they are defined once in the organization layer of the hiera repository shared by

all HPC clusters.

IMPORTANT
This step must be done only once for the organization. It can be

skipped safely if the organization layer YAML file already exists.

Initialize the file $ADMIN/hpc-privatedata/hieradata/org.yaml with the following

content:

Common

org: 'company' # lower-case name of the organization
locale: 'en_US'

DNS

domain: "%{::cluster_name}.hpc.example.org"

profiles::dns::client::search: "%{hiera('domain')} hpc.example.org"

profiles::dns::server::config_options:
 forwarders:

© Scibian Projet — v1.9, 2019-04-05

46 | 9.1. Base directories

 - '1.1.1.1'
 - '2.2.2.2'

NTP

profiles::ntp::server::site_servers:
 - "ntp1.example.org"
 - "ntp2.example.org"

APT

profiles::cluster::apt_sources:
 scibian9:
 '30_scibian9':
 location:
"http://%{hiera('scibian_mirror_server')}/%{hiera('scibian_mirror_dir')}"
 release: 'scibian9'
 repos: 'main'
 pin:
 priority: '1000'
 originator: 'Scibian'
 include:
 src: false
 architecture: 'amd64,i386'
 '50_stretch':
 location:
"http://%{hiera('debian_mirror_server')}/%{hiera('debian_mirror_dir')}"
 release: 'stretch'
 repos: 'main contrib non-free'
 pin:
 priority: '500'
 originator: 'Debian'
 include:
 src: false
 architecture: 'amd64,i386'
 '50_stretch-updates':
 location:
"http://%{hiera('debian_mirror_server')}/%{hiera('debian_mirror_dir')}"
 release: 'stretch-updates'
 repos: 'main contrib non-free'
 pin:
 priority: '500'
 originator: 'Debian'
 include:
 src: false
 architecture: 'amd64,i386'
 '50_stretch-security':
 location:
"http://%{hiera('debian_mirror_server')}/%{hiera('debian_sec_mirror_dir')}"
 release: 'stretch/updates'
 repos: 'main contrib non-free'
 pin:
 priority: '500'
 originator: 'Debian'
 include:
 src: false
 architecture: 'amd64,i386'

SMTP/Postfix

profiles::postfix::relay::config_options:
 relay_domains: '$mydestination example.org'
 relayhost: 'smtp.example.org'

LDAP/SSSD

ldap_external: 'ldap.example.org'

© Scibian Projet — v1.9, 2019-04-05

9.2. Organization settings | 47

profiles::auth::client::sssd_options_domain:
 ldap_search_base: 'dc=example,dc=org'
 ldap_user_search_base: 'ou=people,dc=example,dc=org'
 ldap_group_search_base: 'ou=groups,dc=example,dc=org'

NOTE

This configuration supposes the APT, NTP, SMTP, DNS and LDAP settings are

similar on all the HPC clusters of your organization. This might not be true in

some specific organization environments. In this case, the settings of the

affected services must be defined in the cluster specific layers of the hiera

repository instead.

The examples values must be replaced with the settings corresponding to your organization

environment.

9.3. Cluster directories

Some directories are required to store cluster specific file and settings inside the internal

configuration repository. Create these directories with the following command:

mkdir $ADMIN/hpc-privatedata/puppet-config/$CLUSTER \
 $ADMIN/hpc-privatedata/files/$CLUSTER \
 $ADMIN/hpc-privatedata/hieradata/$CLUSTER \
 $ADMIN/hpc-privatedata/hieradata/$CLUSTER/roles

9.4. Puppet configuration

The hpc-config-push Puppet-HPC utility expects to find a Puppet and Hiera configuration

files for the cluster under the puppet-config directory of the internal configuration repository.

Simply copy examples configuration files provided with Puppet-HPC:

cp $ADMIN/puppet-hpc/examples/privatedata/{puppet.conf,hiera.yaml} \
 $ADMIN/hpc-privatedata/puppet-config/$CLUSTER/

The hiera.yaml file notably specifies the layers of YAML files composing the hiera repository.

It can eventually be tuned for additional layer to fit your needs.

Puppet-HPC requires the cluster name and prefix to be a declared a YAML file cluster-

nodes.yaml. Technically speaking, this YAML file is deployed by hpc-config utilities on

every nodes in /etc/hpc-config directory. It is then used as aconfiguration input file for the

external node classifer (ENC) cluster-node-classifier provided with hpc-config.

Define the file $ADMIN/hpc-privatedata/puppet-config/$CLUSTER/cluster-

nodes.yaml with the following content:

© Scibian Projet — v1.9, 2019-04-05

48 | 9.3. Cluster directories

https://puppet.com/docs/puppet/latest/nodes_external.html

cluster_name: foobar
cluster_prefix: fb

If the cluster is composed of multiple areas, they must also be declared in this YAML file with

their associated roles. For example:

areas:
 infra:
 - admin
 - service
 user:
 - front
 - cn

In this declaration, the admin and service roles are membered of the infra area, the front and cn

roles are membered of the user area.

9.5. Cluster definition

The cluster specific layers of the Hiera repository must be initialized with a sufficient description

of the HPC cluster. This description is the cluster definition.

9.5.1. Networks definition

A specific layer in the hiera repository stack is dedicated to all the networks settings of the HPC

cluster. This layer is defined in file $ADMIN/hpc-

privatedata/hieradata/$CLUSTER/network.yaml. Initialize this file with the following

content:

profiles::network::ib_enable: false
profiles::network::opa_enable: true

net_topology:
 wan:
 name: 'WAN'
 prefixes: 'wan'
 ipnetwork: '10.3.0.0'
 netmask: '255.255.255.0'
 prefix_length: '/24'
 gateway: '10.3.0.254'
 broadcast: '10.3.0.255'
 ip_range_start: '10.3.0.1'
 ip_range_end: '10.3.0.254'
 firewall_zone: 'wan'
 backoffice:
 name: 'CLUSTER'
 ipnetwork: '10.1.0.0'
 netmask: '255.255.255.0'
 prefix_length: '/24'
 gateway: '10.1.0.0' # fbproxy
 broadcast: '10.1.0.255'
 ip_range_start: '10.1.0.1'

© Scibian Projet — v1.9, 2019-04-05

9.5. Cluster definition | 49

 ip_range_end: '10.1.0.254'
 firewall_zone: 'clstr'
 pool0:
 ip_range_start: '10.1.0.1'
 ip_range_end: '10.1.0.254'
 lowlatency:
 name: 'LOWLATENCY'
 prefixes: 'opa'
 ipnetwork: '10.4.0.0'
 netmask: '255.255.255.0'
 prefix_length: '/24'
 broadcast: '10.4.0.255'
 ip_range_start: '10.4.0.1'
 ip_range_end: '10.4.0.254'
 firewall_zone: 'clstr'
 management:
 name: 'MGT'
 prefixes: 'mgt'
 ipnetwork: '10.2.0.0'
 netmask: '255.255.255.0'
 prefix_length: '/24'
 broadcast: '10.2.0.255'
 ip_range_start: '10.2.0.1'
 ip_range_end: '10.2.0.254'
 firewall_zone: 'clstr'
 bmc:
 name: 'BMC'
 prefixes: 'bmc'
 ipnetwork: '10.2.0.0'
 netmask: '255.255.255.0'
 prefix_length: '/24'
 broadcast: '10.2.0.255'
 ip_range_start: '10.2.0.1'
 ip_range_end: '10.2.0.254'
 firewall_zone: 'clstr'

network::bonding_options:
 bondbo:
 slaves:
 - eno1
 - eno2
 options: 'mode=802.3ad primary=eth2 miimon=100 updelay=200 downdelay=200'
 description: 'service nodes on backoffice/mgt networks'

network::bridge_options:
 brbo:
 ports:
 - bondbo
 description: 'service nodes on backoffice network'
 brmgt:
 ports:
 - eno3
 description: 'service nodes on management network'
 brwan:
 ports:
 - eno4
 description: 'service nodes on WAN network'

master_network:
 fbservice1:
 fqdn: "fbservice1.%{hiera('domain')}"
 networks:
 backoffice:
 'DHCP_MAC': 'aa:bb:cc:dd:ee:00'
 'IP': '10.1.0.1'
 'device': 'brbo'
 'hostname': 'fbservice1'

© Scibian Projet — v1.9, 2019-04-05

50 | 9.5. Cluster definition

 lowlatency:
 'IP': '10.4.0.1'
 'device': 'ib0'
 'hostname': 'opafbservice1'
 bmc:
 'DHCP_MAC': 'aa:bb:cc:dd:ee:01'
 'IP': '10.2.0.101'
 'hostname': 'bmcfbservice1'
 management:
 'IP': '10.2.0.1'
 'device': 'brmgt'
 'hostname': 'mgtfbservice1'
 wan:
 'IP': '10.3.0.1'
 'device': 'brwan'
 'hostname': 'wanfbservice1'
 fbservice2:
 fqdn: "fbservice2.%{hiera('domain')}"
 networks:
 backoffice:
 'DHCP_MAC': 'aa:bb:cc:dd:ee:02'
 'IP': '10.1.0.2'
 'device': 'brbo'
 'hostname': 'fbservice2'
 lowlatency:
 'IP': '10.4.0.2'
 'device': 'ib0'
 'hostname': 'opafbservice2'
 bmc:
 'DHCP_MAC': 'aa:bb:cc:dd:ee:03'
 'IP': '10.2.0.102'
 'hostname': 'bmcfbservice2'
 management:
 'IP': '10.2.0.2'
 'device': 'brmgt'
 'hostname': 'mgtfbservice2'
 wan:
 'IP': '10.3.0.2'
 'device': 'brwan'
 'hostname': 'wanfbservice2'
 fbservice3:
 fqdn: "fbservice3.%{hiera('domain')}"
 networks:
 backoffice:
 'DHCP_MAC': 'aa:bb:cc:dd:ee:04'
 'IP': '10.1.0.3'
 'device': 'brbo'
 'hostname': 'fbservice3'
 lowlatency:
 'IP': '10.4.0.3'
 'device': 'ib0'
 'hostname': 'opafbservice3'
 bmc:
 'DHCP_MAC': 'aa:bb:cc:dd:ee:05'
 'IP': '10.2.0.103'
 'hostname': 'bmcfbservice3'
 management:
 'IP': '10.2.0.3'
 'device': 'brmgt'
 'hostname': 'mgtfbservice3'
 wan:
 'IP': '10.3.0.3'
 'device': 'brwan'
 'hostname': 'wanfbservice3'
 fbservice4:
 fqdn: "fbservice4.%{hiera('domain')}"
 networks:

© Scibian Projet — v1.9, 2019-04-05

9.5. Cluster definition | 51

 backoffice:
 'DHCP_MAC': 'aa:bb:cc:dd:ee:06'
 'IP': '10.1.0.4'
 'device': 'brbo'
 'hostname': 'fbservice4'
 lowlatency:
 'IP': '10.4.0.4'
 'device': 'ib0'
 'hostname': 'opafbservice4'
 bmc:
 'DHCP_MAC': 'aa:bb:cc:dd:ee:07'
 'IP': '10.2.0.104'
 'hostname': 'bmcfbservice4'
 management:
 'IP': '10.2.0.4'
 'device': 'brmgt'
 'hostname': 'mgtfbservice4'
 wan:
 'IP': '10.3.0.4'
 'device': 'brwan'
 'hostname': 'wanfbservice4'

High-Availability Virtual IP addresses

vips:
 service1:
 network: 'backoffice'
 ip: '10.1.0.101'
 hostname: 'vipfbservice1'
 router_id: 161
 master: 'fbservice1'
 members: 'fbservice[1-4]'
 secret: "%{hiera('vips_secret')}"
 advert_int: '2'
 service2:
 network: 'backoffice'
 ip: '10.1.0.102'
 hostname: 'vipfbservice2'
 router_id: 162
 master: 'fbservice2'
 members: 'fbservice[1-4]'
 secret: "%{hiera('vips_secret')}"
 advert_int: '2'
 service3:
 network: 'backoffice'
 ip: '10.1.0.103'
 hostname: 'vipfbservice3'
 router_id: 163
 master: 'fbservice3'
 members: 'fbservice[1-4]'
 secret: "%{hiera('vips_secret')}"
 advert_int: '2'
 service4:
 network: 'backoffice'
 ip: '10.1.0.104'
 hostname: 'vipfbservice4'
 router_id: 164
 master: 'fbservice4'
 members: 'fbservice[1-4]'
 secret: "%{hiera('vips_secret')}"
 advert_int: '2'

The first profiles::network::{ip,opa}_enable define which high-performance

interconnect network technology is involved in the HPC cluster (InfiniBand or Intel Omni-Path).

© Scibian Projet — v1.9, 2019-04-05

52 | 9.5. Cluster definition

The net_topology hash basically define the adressing maps of the various IP networks of the

clusters, along with some metadata such as the network hostname prefixes, the DHCP dynamic

pools and the firewall zones associated to these IP networks.

The network::bonding_options and network::bridge_options hashes respectively

define all the network interfaces bondings and virtual bridges involved on the nodes of the HPC

cluster. Note that these settings are global to all nodes.

The master_network hash defines the list of nodes and all their network interfaces with the

associated IP addresses, network hostnames and eventually MAC addresses (on the

administration and bmc networks).

Finally, the vips hash define the virtual highly-available IP addresses (VIP) managed by nodes

of the HPC cluster.

NOTE
At this stage, the vips hash interpolates an undefined parameter

vips_secret. It will be actually defined in Section 9.7.6, “VIP encryption

keys” within the area hiera layer.

Initially, the YAML file must contain all the IP network definitions and the network settings of all

the generic service nodes with their VIP.

9.5.2. General cluster settings

The cluster specific general parameters and services settings are located in file $ADMIN/hpc-

privatedata/hieradata/$CLUSTER/cluster.yaml. Initialize this file with the following

content:

user_groups: # Array of user groups allowed to access to the cluster
 - 'grpusers1'
 - 'grpusers2'
admin_group: 'grpadmin'

Areas

Optionlly define areas (with associated network/subnetworks) by
uncommenting the following hash:
#
#areas:
infra:
network: backoffice
subnetwork: boinfra
user:
network: backoffice
subnetwork: bouser
#
If using only the default area, this parameter does not need to be defined.

Installer
scibian_mirror_server: 'scibian.org'
scibian_mirror_dir: 'repo'
debian_mirror_server: 'deb.debian.org' # debian geo mirror
debian_mirror_dir: 'debian'

© Scibian Projet — v1.9, 2019-04-05

9.5. Cluster definition | 53

DNS Cluster settings

profiles::dns::client::nameservers:
 - '10.1.0.101' # VIP addresses of generic service nodes on administration
 - '10.1.0.102' # network
 - '10.1.0.103'
 - '10.1.0.104'
profiles::dns::server::config_options:
 listen-on:
 - '127.0.0.1'
 - '10.1.0.1' # Static IP addresses of generic service nodes on
 - '10.1.0.2' # administration network
 - '10.1.0.3'
 - '10.1.0.4'
 - '10.1.0.101' # VIP addresses of generic service nodes on administration
 - '10.1.0.102' # network
 - '10.1.0.103'
 - '10.1.0.104'
 - '10.2.0.1' # Static IP addresses of generic service nodes on
 - '10.2.0.2' # management network
 - '10.2.0.3'
 - '10.2.0.4'

Bootsystem

boot_params:
 fbservice[1-4]: # generic service nodes specific boot params
 boot_dev: 'eno0'

hpc-config-apply configuration file downloaded by the debian-installer.
boothttp::hpc_files:
 "%{hiera('website_dir')}/disk/hpc-config.conf":
 source: "file:///etc/hpc-config.conf"

DHCP

profiles::dhcp::default_options:
 - 'INTERFACES=bradm' # bridge interfaces of the generic service nodes on the
 # administration and management networks
profiles::dhcp::includes:
 bo-subnet:
 'pool_name': 'subnet'
 'subnet_name': 'backoffice-default'
 'tftp': true
 'pool':
 'use-host-decl-names': 'on'
 'deny': 'unknown-clients'
 'max-lease-time': '1800'
 # Range of IP addresses on the administration network
 'range': '10.1.0.1 10.1.0.254'
 'include': '/etc/dhcp/adm_subnet'
 mgt-subnet:
 'pool_name': 'subnet'
 'subnet_name': 'management-default'
 'tftp': false
 'pool':
 'use-host-decl-names': 'on'
 'deny': 'unknown-clients'
 'max-lease-time': '1800'
 # Range of IP addresses on the management network
 'range': '10.2.0.1 10.2.0.254'
 'include': "/etc/dhcp/mgt_subnet"

Additionally to some general parameters (user_groups, admin_group), the initial version of

this file notably contains the configuration of the base services required to install nodes on disk

© Scibian Projet — v1.9, 2019-04-05

54 | 9.5. Cluster definition

(DNS, TFTP, HTTP, DHCP, Debian installer, etc).

Also, in order to prevent user to access the cluster during the installation process, it is

recommended to enable the maintenance mode in this file:

profiles::access::maintenance_mode: true

9.6. Service role

The Puppet role service associated to the generic service nodes must be defined with the

corresponding profiles. This is achieved by initializing file $ADMIN/hpc-

privatedata/hieradata/$CLUSTER/roles/service.yaml with the following content:

profiles:
 # common
 - profiles::cluster::common
 - profiles::systemd::base
 - profiles::ssmtp::client
 - profiles::network::base
 - profiles::dns::client
 - profiles::access::base
 - profiles::openssh::server
 - profiles::openssh::client
 - profiles::environment::base
 - profiles::environment::limits
 - profiles::environment::service
 - profiles::log::client
 # HW host
 - profiles::hardware::ipmi
 - profiles::hardware::admin_tuning
 # service
 - profiles::hpcconfig::push
 - profiles::hpcconfig::apply
 - profiles::ntp::server
 - profiles::openssh::client_identities
 - profiles::clush::client
 - profiles::ha::base
 - profiles::http::secret
 - profiles::http::system
 - profiles::apt::proxy
 - profiles::log::server
 - profiles::dns::server
 - profiles::bootsystem::server
 - profiles::dhcp::server

profiles::network::gw_connect: 'wan'

The first profiles (below the common comment) are common to all nodes of the cluster. The

profiles after the HW host comment are common to all bare metal nodes. The last profiles, after

the service comment, carry the base services hosted by the generic service nodes.

The last parameter profiles::network::gw_connect defines on which network’s gateway

the nodes use as their default route.

© Scibian Projet — v1.9, 2019-04-05

9.6. Service role | 55

9.7. Authentication and encryption keys

Cluster configurations comprises many sensitive data such as passwords, private keys,

confidential files, and so on. The Puppet-HPC stack provides an integrated mechanism for

storing these data securily in the internal configuration repository. This mechanism is fully

explained in the Puppet-HPC Reference Documentation (chapter Software Architecture, section

Sensitive Data Encryption). Basically, these data are encrypted using two keys:

• asymmetric PKCS7 key pair for encrypting values in Hiera with eyaml,

• symmetric AES key, named as the cluster password, for encrypting files.

These keys are also used to decrypt data on nodes of the cluster main area. If the cluster is

composed of only one area (ex: default), only these two keys are involved on the cluster.

Otherwise, additional and dedicated keys are used by the other areas to decrypt their sensitive

data.

IMPORTANT

In all cases, only the keys of the main area are used to manipulate

the sensitive data in the internal configuration repository. The keys

of the optional other areas are used dynamically and transparently by

the hpc-config utilities in the Puppet-HPC stack.

9.7.1. Main area keys bootstrap

The PKCS7 eyaml key pair must be created initially. First, create the directory for these keys:

mkdir -p /etc/puppet/secure/keys

Then, setup the eyaml configuration to use this directory:

mkdir -p ~/.eyaml
cat << EOF > ~/.eyaml/config.yaml

 pkcs7_private_key: /etc/puppet/secure/keys/private_key.pkcs7.pem
 pkcs7_public_key: /etc/puppet/secure/keys/public_key.pkcs7.pem
EOF

And generate the keys with:

eyaml createkeys

Restrict modes and ownership properly on files and directories:

© Scibian Projet — v1.9, 2019-04-05

56 | 9.7. Authentication and encryption keys

chmod 700 /etc/puppet/secure
chown -R puppet:puppet /etc/puppet/secure/keys
chmod -R 0500 /etc/puppet/secure/keys
chmod 0400 /etc/puppet/secure/keys/*.pem

Then, generate the cluster password:

openssl rand -base64 32

The output of this command must be saved encrypted with eyaml keys in the area layer of the

internal Hiera repository. Create the directory of this layer and edit the area YAML file with

eyaml:

mkdir $ADMIN/hpc-privatedata/hieradata/$CLUSTER/areas
eyaml edit $ADMIN/hpc-privatedata/hieradata/$CLUSTER/areas/$MAIN.yaml

Where $MAIN is the name of the main area (ex: default or infra).

In the editor, add a line like this, and save:

cluster_decrypt_password: DEC::PKCS7[<the password given by the openssl command>]!

Finally, store an encrypted archive of the eyaml keys in the internal configuration repository:

create main area eyaml directory
mkdir -p $ADMIN/hpc-privatedata/files/$CLUSTER/$MAIN/eyaml/$MAIN

build archive
tar cJf $ADMIN/hpc-privatedata/files/$CLUSTER/$MAIN/eyaml/$MAIN/keys.tar.xz \
 -C /etc/puppet/secure keys

encrypt archive
$ADMIN/puppet-hpc/scripts/encode-file.sh \
 $ADMIN/hpc-privatedata $CLUSTER \
 $ADMIN/hpc-privatedata/files/$CLUSTER/$MAIN/eyaml/$MAIN/keys.tar.xz

delete temporary unencrypted archive
rm $ADMIN/hpc-privatedata/files/$CLUSTER/$MAIN/eyaml/$MAIN/keys.tar.xz

9.7.2. Other areas encryption keys

This step can be skipped if the cluster is composed of only one area. Otherwise, this step must

be repeated for all areas except the main one.

First, generate the cluster password of the area:

openssl rand -base64 32

© Scibian Projet — v1.9, 2019-04-05

9.7. Authentication and encryption keys | 57

Save the output into the area YAML file with eyaml:

eyaml edit $ADMIN/hpc-privatedata/hieradata/$CLUSTER/areas/$OTHER.yaml

Where $OTHER is the name of the other area (ex: user).

In the editor, add a line like this, and save:

cluster_decrypt_password: DEC::PKCS7[<the password given by the openssl command>]!

Set a shell variable KEYS_DIR, with the path of the other area keys directory, in order to simplify

following commands:

export KEYS_DIR=$ADMIN/hpc-privatedata/files/$CLUSTER/$MAIN/eyaml/$OTHER

Create the directories for storing the area eyaml keys, including a keys temporary subdirectory:

mkdir -p $KEYS_DIR/keys

Generate the area eyaml keys:

eyaml createkeys \
 --pkcs7-private-key $KEYS_DIR/keys/private_key.pkcs7.pem \
 --pkcs7-public-key $KEYS_DIR/keys/public_key.pkcs7.pem

Build the archive and clean temporary files:

build archive
tar cJf $KEYS_DIR/keys.tar.xz \
 -C $KEYS_DIR keys

delete temporary keys subdirectory
rm -rf $KEYS_DIR/keys

Finally, encrypt the archive and remove the unencrypted version:

encrypt archive
$ADMIN/puppet-hpc/scripts/encode-file.sh \
 $ADMIN/hpc-privatedata $CLUSTER \
 $KEYS_DIR/keys.tar.xz

delete temporary unencrypted archive
rm $KEYS_DIR/keys.tar.xz

© Scibian Projet — v1.9, 2019-04-05

58 | 9.7. Authentication and encryption keys

9.7.3. SSH host keys

The SSH host keys must stay consistent between node re-installations and/or diskless reboots.

To ensure this, the SSH host keys are generated in the cluster’s files directory of the internal

configuration repository before their first installation and/or diskless boot.

This cluster nodes classifier utility is run by the SSH hostkeys generation script to get the area

of the nodes. Initially, copy the configuration file of this utility to its target path:

cp $ADMIN/hpc-privatedata/puppet-config/$CLUSTER/cluster-nodes.yaml \
 /etc/hpc-config/cluster-nodes.yaml

To generate the hostkeys, the script needs to know the local domain name of the cluster. By

default, the script will use the local domain of the machine where it runs by default. If this is not

correct you must provide the domain in argument. Run the script with the following command:

cd $ADMIN && puppet-hpc/scripts/sync-ssh-hostkeys.sh \
 hpc-privatedata $CLUSTER [$CLUSTER.$NETDOMAIN]

This script ensures that all nodes present in the master_network hash have valid SSH host

keys. During this step, the known_hosts file will also be synchronized with the generated keys.

This file will be stored in hpc-

privatedata/files/$CLUSTER/cluster/ssh/known_hosts.

9.7.4. SSH root key

For password-less SSH authentication from the admin and generic service nodes to all the other

nodes of the cluster, SSH authentication keys pair are deployed for root on the nodes.

First, create the rootkeys sub-directory in the cluster’s files directory of the internal

configuration repository:

cd $ADMIN && mkdir -p hpc-privatedata/files/$CLUSTER/$MAIN/rootkeys

Then, generate the key pair:

ssh-keygen -t rsa -b 2048 -N '' -C root@$CLUSTER \
 -f hpc-privatedata/files/$CLUSTER/$MAIN/rootkeys/id_rsa_root

Key type and size can be adjusted. Encode the private key with the following helper script

provided by Puppet-HPC:

puppet-hpc/scripts/encode-file.sh hpc-privatedata $CLUSTER \
 hpc-privatedata/files/$CLUSTER/$MAIN/rootkeys/id_rsa_root

© Scibian Projet — v1.9, 2019-04-05

9.7. Authentication and encryption keys | 59

Do not forget to remove the generated unencrypted private key:

rm hpc-privatedata/files/$CLUSTER/$MAIN/rootkeys/id_rsa_root

Finally, publish the public key with the following parameter in the cluster specific layer of the

hiera repository $ADMIN/hpc-privatedata/hieradata/$CLUSTER/cluster.yaml:

openssh::server::root_public_key: <pubkey>

9.7.5. Root password

The root password is stored hashed in Hiera repository and encrypted with eyaml keys. Set the

root password on the temporary installation node (using passwd command) then extract the

resulting hash from /etc/shadow file. Get the whole second field:

root:<long password hash>:17763:0:99999:7:::

Then paste the hash into the main area Hiera layer using eyaml command:

eyaml edit $ADMIN/hpc-privatedata/hieradata/$CLUSTER/areas/$MAIN.yaml

Then add this line in the editor:

profiles::cluster::root_password_hash: DEC::PKCS7[<long password hash>]!

The profiles::cluster::root_password_hash must be defined in all areas of the

cluster. If the cluster is composed of multiple areas, you must repeat the steps for all other

areas. It is obviously more secure if the password is different in each area, since an area will not

be able to access the hash of the root password of the nodes in other areas.

9.7.6. VIP encryption keys

The keepalived service relies on a shared key to authenticate the nodes sharing a VRRP

instance to manage a virtual IP address (VIP).

With Puppet-HPC, this key is common to all VIP instances of an area. Sensitive data being local

to an area, keys must be generated for each area that includes nodes sharing a VIP.

Generate a random password with the following command:

makepasswd --minchars=16 --maxchars=16

© Scibian Projet — v1.9, 2019-04-05

60 | 9.7. Authentication and encryption keys

Edit the area YAML file with eyaml:

eyaml edit $ADMIN/hpc-privatedata/hieradata/$CLUSTER/areas/$AREA.yaml

And save the output of the makepasswd command with the following parameter:

vips_secret: DEC::PKCS7[<password>]!

This procedure must be repeated for all areas that include nodes sharing a VIP.

© Scibian Projet — v1.9, 2019-04-05

9.7. Authentication and encryption keys | 61

Chapter 10. Generic service nodes

10.1. Temporary installation services

The goal of this section is to configure the Temporary Installation Services on the Temporary

Installation Node. This process is done in two steps:

• A First Run only using local files or external services

• A Second Run reconfiguring the Temporary Installation Node to use the services setup

during the First Run with values that will also be used to install the other generic nodes

remotely.

10.2. First Run

Consul is not available because the consul cluster needs quorum to work. Quorum can only be

achieved when more than half of the generic service nodes are configures. The DNS server is

therefore configured to only returns the temporary installation node for all requests on the

consul domain. This is done simply by adding temporarily the following parameters in file

$ADMIN/hpc-privatedata/hieradata/$CLUSTER/cluster.yaml:

dns::server::virtual_relay: false
install_server_ip: '10.1.0.1' # static IP address of the temporary
 # installation node on the administration
 # network

Technically speaking, these parameters makes bind authorative on the virtual DNS zone before

Consul service discovery utility is available. The virtual zone contains all the symbolic names to

the network services (ex: http.virtual). This way, all services will be directed to the

temporary installation node with the IP address provided in install_server_ip parameter.

The first run also needs to work properly without a local DNS server and without a local

repository cache proxy. These services will be configured during this first run. Local repositories

must also be disabled during the first run.

The normal values must be searched in cluster.yaml and commented out
apt::proxy_host: ''
profiles::dns::client::nameservers:
 - '172.16.1.1' # External DNS server
hpcconfig::push::config_options:
 global:
 cluster: "%{::cluster_name}"
 areas: '<AREAS>'
 mode: 'posix'
 destination: "%{hiera('profiles::http::system::docroot')}/hpc-config"

Where <AREAS> must be replaced with the comma separated list of areas on the cluster (ex:

© Scibian Projet — v1.9, 2019-04-05

62 | 10.1. Temporary installation services

infra,user or default).

The configuration will be pushed on local files while the temporary installation is used. The

settings above configures this, but the first push must use a configuration that will be created

manually in the file: /etc/hpc-config/push.conf.

[global]
environment=production
version=latest
areas=<AREAS>
destination=/var/www/system/hpc-config
cluster=<CLUSTER NAME>
mode=posix

The directory where the keys were generated cannot be used as a key source for apply

because it will be overwritten during the apply. So it must be copied before doing the apply. To

deploy the configuration of the temporary installation node, run the following commands:

cd $ADMIN
hpc-config-push
mkdir $ADMIN/keys
chmod 700 $ADMIN/keys
tar cJf $ADMIN/keys/keys.tar.xz -C/etc/puppet/secure keys
hpc-config-apply --source file:///var/www/system/hpc-config \
 --keys-source=file://$ADMIN/keys \
 [--area <AREA>]
 --verbose
rm -rf $ADMIN/keys

The area parameter is required if the service node is not in default area.

If the run returned no error, there is some checks to do before proceeding. In the following

commands IP1 is the IP address of the current node. VIP[1-4] are the IP addresses of the VIP

for the service nodes.

You should check the following commands return no errors:

wget -O /dev/null http://<IP1>:3139/hpc-config
dig +short @VIP1 apt.service.virtual
IP1
dig +short @VIP2 apt.service.virtual
IP1
dig +short @VIP3 apt.service.virtual
IP1
dig +short @VIP4 apt.service.virtual
IP1

With these commands we are now sure that:

• The Apache System service is responding properly

• The DNS service on the current node is working and always return the

install_server_ip for all the .virtual requests

© Scibian Projet — v1.9, 2019-04-05

10.2. First Run | 63

• The virtual IP addresses are up and all responding on the current service node.

10.3. Second Run

The goal of this run is to switch hpc-config-apply to download files through apache and not

just get them locally. We also change the local DNS client configuration to use the newly

configured local DNS server.

To change the hpc-config-apply source, do these changes in cluster.yaml:

hpcconfig::apply::config_options:
 DEFAULT:
 source:
 value: "http://web-
system.service.virtual:%{hiera('profiles::http::system::port')}/hpc-config"
 keys_source:
 value:
"http://secret.service.%{hiera('virtual_domain')}:%{hiera('secret_port')}/%{::area}"

To switch to the local DNS server, remove the profiles::dns::client::nameservers

added for the first run and uncomment the normal one that was commented out. Also remove

the temporary apt::proxy_host setting to use the configured apt-cacher-ng.

Do the actual run:

cd $ADMIN && hpc-config-push && hpc-config-apply -v

If the two commands run without error, the initial setup succeeded.

At this stage, the temporary installation service are fully configured and available to install other

generic service nodes.

10.4. Base system installation

The other generic service nodes must now be rebooted in PXE mode to run the Debian installer

and configure the base system:

for BMC in $(nodeset -O bmc%s -e service[2-4]); do
 ipmitool -I lanplus -U ADMIN -P ADMIN -H $BMC chassis bootdev pxe
 ipmitool -I lanplus -U ADMIN -P ADMIN -H $BMC power reset
done

Replace the BMC credentials with the appropriate values.

© Scibian Projet — v1.9, 2019-04-05

64 | 10.3. Second Run

IMPORTANT

Scibian provides a default network installation system designed to work

in most situations. However, at this point, you may need to tune this

system to make it work on your cluster and its hardware setup. Please

refer to Chapter 26, Network Boot and Installation Tuning for the

procedures.

Once the base system is fully installed, the nodes reboot and become available with SSH.

Check this with:

clush -bw fbservice[2-4] uname

fbservice[2-4] (3)

Linux

At this stage, all generic services nodes are available to host the configuration environments.

The parameters of the hpc-config-push utility can be updated to switch from posix to sftp. In

this mode, the utility will upload the configuration environment on all generic service nodes. Edit

$ADMIN/hpc-privatedata/hieradata/$CLUSTER/cluster.yaml file to update the

hpconfig::push::config_options hash with the following changes:

 hpcconfig::push::config_options:
 global:
 cluster: "%{::cluster_name}"
- mode: 'posix'
+ mode: 'sftp'
 destination: "%{hiera('profiles::http::system::docroot')}/hpc-config"
 areas: 'infra,user'
+ sftp:
+ hosts: 'fbservice1,fbservice2,fbservice3,fbservice4'
+ private_key: '/root/.ssh/id_rsa_root'

Then push and apply the configuration on the first service node:

cd $ADMIN && hpc-config-push && hpc-config-apply -v

This will update /etc/hpc-config/push.conf configuration file.

Then run this command again to upload the configuration environment on all service nodes:

cd $ADMIN && hpc-config-push

Starting from now, all generic service nodes can be used as a valid source for the configuration

environments.

© Scibian Projet — v1.9, 2019-04-05

10.4. Base system installation | 65

10.5. Ceph deployment

Deployment is based on a tool called ceph-deploy. This tool performs the steps on a node to

setup a ceph component. It is only used for the initial setup of the Ceph cluster. Once the cluster

is running, the configuration is reported in the Puppet configuration in case it is re-deployed.

The reference configuration uses one disk (or hardware RAID LUN) to hold the system

(/dev/sda) and another to hold the Ceph OSD data and journal (/dev/sdb). Three or five

nodes must be chosed to setup the MON and MDS services, the remaining nodes are used only

as OSD and RadosGW nodes.

The ceph-deploy utility generates authentication keys for Ceph. Once the cluster is running,

theses keys are manually collected and encrypted with eyaml to be included in the hiera
configuration.

In the following example MONs/MDS are installed on nodes fbservice[2-4] while the node

fbservice1 only has OSD and RGW.

10.5.1. Packages installation

Install the ceph-deploy utility and the S3 CLI client s3cmd:

apt-get install ceph-deploy s3cmd

The deployment of Ceph cluster generates a bunch of files (keyrings, configuration file, etc).

Create a temporary directory to store these files:

mkdir ~root/ceph-deploy && cd ~root/ceph-deploy

Install the Ceph software stack on all nodes of the Ceph cluster:

ceph-deploy install --no-adjust-repos $(nodeset -e @service)

10.5.2. Cluster bootstrap

Initialize the cluster with the first MON server of the Ceph cluster in parameter:

ceph-deploy new \
 --public-network <administration network address> \
 --cluster-network <administration network address> \
 fbservice2
ceph-deploy mon create-initial

Install admin credentials

© Scibian Projet — v1.9, 2019-04-05

66 | 10.5. Ceph deployment

ceph-deploy admin $(nodeset -e @service)

Create the MON servers:

ceph-deploy mon add fbservice3
ceph-deploy mon add fbservice4

Create the OSD servers:

ceph-deploy disk zap $(nodeset -O %s:sdb -e @service)
ceph-deploy osd prepare $(nodeset -O %s:sdb -e @service)

Create the MDS servers:

ceph-deploy mds create $(nodeset -e fbservice[2-4])

Check the Ceph cluster status:

ceph status

The command must report HEALTH_OK.

10.5.3. RadosGW

Enable RadosGW with the following command:

ceph-deploy rgw create $(nodeset -e @service)

10.5.4. Libvirt RBD pool

The virtual machines will use a specific libvirt storage pool to store the disk images. This libvirt

storage pool uses ceph RBD, so a specific ceph pool is necessary. This is not handled by

ceph-deploy:

ceph osd pool create libvirt-pool 64 64

If the cluster has five OSDs or more, the numbers of PG and PGP can be set to 128 instead of

64.

The client credentials must be manually generated:

© Scibian Projet — v1.9, 2019-04-05

10.5. Ceph deployment | 67

ceph auth get-or-create client.libvirt \
 mon 'allow r' \
 osd 'allow class-read object_prefix rbd_children, allow rwx pool=libvirt-pool'

10.5.5. CephFS initialization

In high-availability mode, Slurm controller requires a shared POSIX filesystem between the

primary and the backup controllers. In the Scibian HPC cluster reference architecture, CephFS

is used for this filesystem. Create this CephFS filesystem with the following commands:

ceph osd pool create cephfs_data 64 64
pool 'cephfs_data' created
ceph osd pool create cephfs_metadata 64 64
pool 'cephfs_metadata' created
ceph fs new cephfs cephfs_metadata cephfs_data
new fs with metadata pool 15 and data pool 14

If the cluster has five OSDs or more, the numbers of PGs can be set to 128 for data and

metadata pool.

10.5.6. RadosGW S3

A user must be created to access the RadosGW S3 API:

radosgw-admin user create --uid=hpc-config --display-name="HPC Config push"

This commands gives an access_key and a secret_key that can be used by hpc-config-

push(1) or s3cmd(1).

Create a temporary configuration file for s3cmd with these keys:

cat <<EOF >~/.s3cfg
[default]
access_key=<ACCESS_KEY>
secret_key=<SECRET_KEY>
host_bucket=%(bucket)s.service.virtual:7480
host_base=rgw.service.virtual:7480
use_https=False
EOF

With the access_key and the secret_key provided by radosgw-admin user create

command.

To work properly with Amazon S3 tools and consul DNS, RadosGW must be configured to

accept requests on rgw.service.virtual and on <bucket_name>.service.virtual.

To configure this, it is necessary to re-define the default realm, region and zonegroup.

© Scibian Projet — v1.9, 2019-04-05

68 | 10.5. Ceph deployment

The region is configured by writing a JSON region file (rgw-region.json):

{"name": "default",
 "api_name": "",
 "is_master": "true",
 "endpoints": [],
 "hostnames": ["rgw.service.virtual", "service.virtual"],
 "master_zone": "",
 "zones": [
 {"name": "default",
 "endpoints": [],
 "log_meta": "false",
 "log_data": "false"}
],
 "placement_targets": [
 {"name": "default-placement",
 "tags": [] }],
 "default_placement": "default-placement"
}

Inject this region file into RadosGW configuration:

radosgw-admin realm create --rgw-realm=default --default
radosgw-admin region set --infile rgw-region.json
radosgw-admin region default --rgw-zonegroup=default
radosgw-admin zonegroup add --rgw-zonegroup=default --rgw-zone=default

Define default zone and zonegroup:

radosgw-admin zone default --rgw-zone=default
radosgw-admin zonegroup default --rgw-zonegroup=default

Update the period:

radosgw-admin period get
radosgw-admin period update --commit

After this step the RadosGW daemons must be restarted on every nodes:

clush -g service 'systemctl restart ceph-radosgw@rgw.${HOSTNAME}.service'

Finally, create the bucket with s3cmd:

s3cmd mb --acl-public s3://s3-system
Bucket 's3://s3-system/' created

10.5.7. Transfer to Hiera

When the Ceph cluster is fully initialized, its configuration must be reported to the Hiera

© Scibian Projet — v1.9, 2019-04-05

10.5. Ceph deployment | 69

repository. First, general topology information must be reported into the cluster specific layer of

the hiera repository $ADMIN/hpc-privatedata/hieradata/$CLUSTER/cluster.yaml,

for example:

profiles::ceph::config_options:
 global:
 fsid: '<fsid>'
 mon_initial_members: 'fbservice2, fbservice3, fbservice4'
 mon_host: 'fbservice2, fbservice3, fbservice4'
 auth_cluster_required: 'cephx'
 auth_service_required: 'cephx'
 auth_client_required: 'cephx'

ceph::mon_config:
 - fbservice2
 - fbservice3
 - fbservice4

ceph::mds_config:
 - fbservice2
 - fbservice3
 - fbservice4

ceph::rgw_config:
 - fbservice1
 - fbservice2
 - fbservice3
 - fbservice4

In this example, the <fsid> must be replaced with the value obtained with the following

command:

ceph fsid

Then, all keyrings must be reported in the area YAML file $ADMIN/hpc-

privatedata/hieradata/$CLUSTER/areas/$AREA.yaml whose generic service nodes

are members (ex: default or infra), using eyaml :

© Scibian Projet — v1.9, 2019-04-05

70 | 10.5. Ceph deployment

ceph_client_admin_key: <eyaml encrypted key>

ceph::keyrings:
 client.admin.keyring:
 client.admin:
 key: "%{hiera('ceph_client_admin_key')}"
 ceph.mon.keyring:
 'mon.':
 key: <eyaml encrypted key>
 'caps mon': 'allow *'
 ceph.bootstrap-mds.keyring:
 client.bootstrap-mds:
 key: <eyaml encrypted key>
 ceph.bootstrap-osd.keyring:
 client.bootstrap-osd:
 'key': <eyaml encrypted key>
 ceph.bootstrap-rgw.keyring:
 client.bootstrap-rgw:
 key: <eyaml encrypted key>

ceph::osd_config:
 fbservice1:
 id: '0'
 device: '/dev/sdb1'
 key: <eyaml encrypted key>
 fbservice2:
 id: '1'
 device: '/dev/sdb1'
 key: <eyaml encrypted key>
 fbservice3:
 id: '2'
 device: '/dev/sdb1'
 key: <eyaml encrypted key>
 fbservice4:
 id: '3'
 device: '/dev/sdb1'
 key: <eyaml encrypted key>

ceph::mds_keyring:
 fbservice2:
 mds.fbservice2:
 key: <eyaml encrypted key>
 fbservice3:
 mds.fbservice3:
 key: <eyaml encrypted key>
 fbservice4:
 mds.fbservice4:
 key: <eyaml encrypted key>

ceph::rgw_client_keyring:
 fbservice1:
 client.rgw.fbservice1:
 key: <eyaml encrypted key>
 fbservice2:
 client.rgw.fbservice2:
 key: <eyaml encrypted key>
 fbservice3:
 client.rgw.fbservice3:
 key: <eyaml encrypted key>
 fbservice4:
 client.rgw.fbservice4:
 key: <eyaml encrypted key>

The bootstrap keys have been generated in the temporary Ceph deployment directory:

© Scibian Projet — v1.9, 2019-04-05

10.5. Ceph deployment | 71

cd ~root/ceph-deploy
cat ceph.client.admin.keyring
cat ceph.mon.keyring
cat ceph.bootstrap-mds.keyring
cat ceph.bootstrap-osd.keyring
cat ceph.bootstrap-rgw.keyring

The OSD keys can be gathered with:

clush -bg service 'cat /var/lib/ceph/osd/ceph-?/keyring'

The MDS keys can be gathered with:

clush -bg service 'cat /var/lib/ceph/mds/ceph-${HOSTNAME}/keyring'

The RGW keys can be gathered with:

clush -bg service 'cat /var/lib/ceph/radosgw/ceph-rgw.${HOSTNAME}/keyring'

Then, add the ceph::server profile into the service role:

--- a/hpc-privatedata/hieradata/foobar/roles/service.yaml
+++ b/hpc-privatedata/hieradata/foobar/roles/service.yaml
@@ -28,5 +28,6 @@
 - profiles::bootsystem::server
 - profiles::dhcp::server
 - profiles::environment::limits
+ - profiles::ceph::server

 profiles::network::gw_connect: 'wan'

Then push the new configuration:

hpc-config-push

Theoritically, at this stage, the Ceph cluster can be fully configured with Puppet. It is really

recommended to check this by re-installing one of the generic service nodes (excepting the

temporary installation node) before going further. Please mind that in case of generic service

node reinstallation after the initial configuration, bootstrap steps may be necessary:

• MDS and RadosGW, those services have no state outside of Rados, so no additional

bootstrap is necessary

• Mon Always necessary to bootstrap

• OSD Must be bootstraped if the OSD volume (/dev/sdb) is lost.

Please refer to the bootstrap procedure section for all details.

© Scibian Projet — v1.9, 2019-04-05

72 | 10.5. Ceph deployment

Once the re-installation of a generic service node with Ceph is validated, the ceph-deploy

temporary directory can be removed from the temporary installation node:

rm -r ~root/ceph-deploy

10.5.8. Network restrictions

By default with Puppet-HPC, Ceph daemons socket are binded to the administration network

interface of the generic service nodes. This setup is done on purpose for security reasons and

avoid access to the Ceph cluster from outside of the administration network (typically from the

wan network, outside of the cluster).

However, this can be easily changed by overriding this parameter in the hiera repository:

profiles::ceph::listen_network: 'wan' # Make ceph listen the wan network for
 # connections, default is 'administration'

It is also possible to totally disable the network restriction settings on Ceph daemons with:

ceph::restrict_network: false

10.6. Consul deployment

All the base services are now deployed on all the generic service nodes. It is time to enable

load-balancing and high-availability with Consul service discovery tool.

Consul needs a shared secret key to encrypt communication between its distributed agents.

Generate this key with:

dd if=/dev/urandom bs=16 count=1 2>/dev/null | base64

The output of this command must be reported in the area layer of the hiera repository

$ADMIN/hpc-privatedata/hieradata/$CLUSTER/areas/$AREA.yaml whose generic

service nodes are members (ex: default or infra) using eyaml:

consul::key: DEC::PKCS7[<key>]!

Add consul::server profile to the service role:

© Scibian Projet — v1.9, 2019-04-05

10.6. Consul deployment | 73

--- a/hpc-privatedata/hieradata/foobar/roles/service.yaml
+++ b/hpc-privatedata/hieradata/foobar/roles/service.yaml
@@ -29,5 +29,6 @@
 - profiles::dhcp::server
 - profiles::environment::limits
 - profiles::ceph::server
+ - profiles::consul::server

 profiles::network::gw_connect: 'wan'

Then, run Puppet on all services nodes:

hpc-config-push && clush -bg service hpc-config-apply -v

Check that all the generic service nodes are members of the Consul cluster with this command:

clush --pick 1 -Ng service consul members
Node Address Status Type Build Protocol DC
fbservice1 10.1.0.1:8301 alive server 0.6.4 2 foobar
fbservice2 10.1.0.2:8301 alive server 0.6.4 2 foobar
fbservice3 10.1.0.3:8301 alive server 0.6.4 2 foobar
fbservice4 10.1.0.4:8301 alive server 0.6.4 2 foobar

The output should report that all the services nodes are members and alive.

Remove dns::server::virtual_relay and install_server_ip parameters from

$ADMIN/hpc-privatedata/hieradata/$CLUSTER/cluster.yaml:

--- a/hpc-privatedata/hieradata/foobar/cluster.yaml
+++ b/hpc-privatedata/hieradata/foobar/cluster.yaml
@@ -225,8 +225,3 @@
 # Static IP addresses of the generic service nodes on the management network
 'domain-name-servers': '10.2.0.1, 10.2.0.2, 10.2.0.3, 10.2.0.4'
 'broadcast': "%{hiera('net::management::broadcast')}"
-
-dns::server::virtual_relay: false
-install_server_ip: '10.1.0.1' # static IP address of the temporary
- # installation node on the administration
- # network

With this new configuration, Bind DNS server relays all DNS requests on the virtual zone to

Consul DNS interface.

Push and the apply the new configuration:

hpc-config-push && clush -bg service hpc-config-apply -v

Finally, check DNS requests on virtual zone are managed by Consul with:

© Scibian Projet — v1.9, 2019-04-05

74 | 10.6. Consul deployment

dig +short web-system.service.virtual
10.1.0.4
10.1.0.2
10.1.0.3

The output must report multiple generic service nodes static IP addresses in random order.

10.7. Temporary installation node sweep

Since the beginning of the installation process, the temporary installation node hosts installation

files and services required to install the other generic service nodes. Now, all the other generic

service nodes host the same files and services. Finally, the temporary installation node must be

re-installed to be strictly identical to the other generic service nodes in terms of configuration.

NOTE

The disks of the temporary installation node are going to be formatted and all

data hosted of this node will be lost. Then, it is probably time to backup all the

manual modifications realized on this node and push all modifications in the

remote internal configuration Git repository.

Reboot the node in PXE mode through its BMC:

export BMC=bmcfbservice1
ipmitool -I lanplus -U ADMIN -P ADMIN -H $BMC chassis bootdev pxe
ipmitool -I lanplus -U ADMIN -P ADMIN -H $BMC power reset

Wait for the network installation to proceed and the node to reboot on the system freshly

installed on its disks.

© Scibian Projet — v1.9, 2019-04-05

10.7. Temporary installation node sweep | 75

Chapter 11. Admin node

Once the Service nodes are fully configured (Ceph, DNS, Consul, DHCP, TFTP, HTTP for

boot…), the cluster is able to reinstall any physical or virtual machine with load-balancing and

high-availability.

The first other node to install is the admin node, the central point of the HPC cluster

administration.

11.1. Base system

Add the admin role by creating the file $ADMIN/hpc-

privatedata/hieradata/$CLUSTER/roles/admin.yaml with the following content:

profiles:
 # common
 - profiles::cluster::common
 - profiles::systemd::base
 - profiles::ssmtp::client
 - profiles::network::base
 - profiles::dns::client
 - profiles::access::base
 - profiles::openssh::server
 - profiles::openssh::client
 - profiles::environment::base
 - profiles::environment::limits
 - profiles::environment::service
 - profiles::log::client
 # HW host
 - profiles::hardware::ipmi
 - profiles::hardware::admin_tuning
 # admin
 - profiles::hpcconfig::push
 - profiles::hpcconfig::apply
 - profiles::ntp::client
 - profiles::openssh::client_identities
 - profiles::clush::client
 - profiles::consul::client
 - profiles::conman::client
 - profiles::clara::base
 - profiles::ceph::client
 - profiles::s3::s3cmd
 - profiles::jobsched::client

profiles::network::gw_connect: 'wan'

profiles::environment::service::packages:
 - scibian-hpc-admin

The profiles listed after the admin comment carry the software required on the admin node. The

profiles::environment::service::packages has a specific value for this role in order

to install the admin meta-package.

Append the node definition in the master_network hash, for example:

© Scibian Projet — v1.9, 2019-04-05

76 | 11.1. Base system

master_network:
 [...]
 fbadmin1:
 fqdn: "fbadmin1.%{hiera('domain')}"
 networks:
 administration:
 'DHCP_MAC': 'aa:bb:cc:dd:ee:08'
 'IP': '10.1.0.10'
 'device': 'eno0'
 'hostname': 'fbadmin1'
 management:
 'IP': '10.2.0.10'
 'device': 'eno1'
 'hostname': 'mgtfbadmin1'
 lowlatency:
 'IP': '10.4.0.10'
 'device': 'ib0'
 'hostname': 'opafbadmin1'
 bmc:
 'DHCP_MAC': 'aa:bb:cc:dd:ee:09'
 'IP': '10.2.0.110'
 'hostname': 'bmcfbadmin1'
 wan:
 'IP': '10.2.0.10'
 'device': 'eno2'
 'hostname': 'wanfbadmin1'

Optionally, adjust the node boot parameters in the boot_params hash, for example:

boot_params:
 [...]
 fbadmin1:
 os: 'scibian9'
 media: 'disk'
 console: 'ttyS0,115200n8'

Synchronize SSH host keys:

puppet-hpc/scripts/sync-ssh-hostkeys.sh hpc-privatedata $CLUSTER

Push and apply the new configuration:

hpc-config-push && clush -bg service hpc-config-apply -v

And reboot the node in PXE mode to proceed the network installation:

export BMC=bmcfbadmin1
ipmitool -I lanplus -U ADMIN -P ADMIN -H $BMC chassis bootdev pxe
ipmitool -I lanplus -U ADMIN -P ADMIN -H $BMC power reset

Wait for the network installation to proceed. Once the installation is over, the node reboot on its

freshly installed system on its disks and it becomes available through SSH. Starting from this

point, all the following operations of the installation process are realized from this admin node.

© Scibian Projet — v1.9, 2019-04-05

11.1. Base system | 77

11.2. Administration environmnent

The administration environment must be re-created following the same instructions given in the

temporary installation node administration environmnet section.

The Clara utility is available on the admin node. Its ipmi plugin can be configured with this small

snippet added with eyaml to the cluster specific layer of the hiera repository:

Clara

clara::ipmi_options:
 prefix: 'bmc'

clara::password_options:
 ASUPASSWD: "%{hiera('cluster_decrypt_password')}"
 IMMUSER: "%{hiera('ipmi_user')}"
 IMMPASSWORD: "%{hiera('ipmi_password')}"

Then add the IPMI identifiers to the admin node area layer (ex: default or infra) of the Hiera

repository using eyaml:

ipmi_user: DEC::PKCS7[<user>]!
ipmi_password: DEC::PKCS7[<password>]!

Push and apply configuration on the admin node:

hpc-config-push && hpc-config-apply -v

Then, the clara ipmi plugin can be used as explained in its documentation (man clara-ipmi

(1)).

© Scibian Projet — v1.9, 2019-04-05

78 | 11.2. Administration environmnent

Chapter 12. Service virtual machines

On Scibian HPC clusters, the additional services are hosted inside virtual machines for more

flexibility and better resources partitionning. These service virtual machines run on the generic

service nodes. On the generic services nodes, the virtual machines are managed by Libvirt

service. The ditributed instances of Libvirt are controlled centrally from the admin node with

Clara utility. The following sub-sections explain how to setup these software components.

12.1. Libvirt settings

The Libvirt service must create various virtual networks to connect the virtual machines to the

HPC cluster and a storage pool on Ceph RDB interface to store the virtual disks of the virtual

machines. These virtual resources are setup with the following configuration in the cluster

specific layer of the hiera repository:

virt_ceph_uuid: '<uuid>'

profiles::virt::networks:
 'administration':
 'mode': 'bridge'
 'interface': 'br0'
 'management':
 'mode': 'bridge'
 'interface': 'br1'
 'wan':
 'mode': 'bridge'
 'interface': 'br2'

profiles::virt::pools:
 'rbd-pool':
 'type': 'rbd'
 'hosts':
 - 'fbservice2'
 - 'fbservice3'
 - 'fbservice4'
 'auth':
 'type': 'ceph'
 'username': 'libvirt'
 'uuid': "%{hiera('virt_ceph_uuid')}"

The <uuid> is an arbitrary UUID [6: Universally Unique IDentifier, a 128-bit number used to

identify information in computer systems] to identify uniquely the secret. For example, it can be

generated with this command:

python -c 'import uuid; print uuid.uuid1()'

Add the libvirt Ceph client identifiers with the following hash into the generic service nodes area

layer (ex: default or infra) of the Hiera repository using eyaml:

© Scibian Projet — v1.9, 2019-04-05

12.1. Libvirt settings | 79

profiles::virt::secrets:
 'client.libvirt':
 'type': 'ceph'
 'uuid': "%{hiera('virt_ceph_uuid')}"
 'value': DEC::PKCS7[<key>]!

The <key> is given by the following command:

ceph auth get-key client.libvirt

The profile profiles::virt::host must be added to service nodes role definition.

Push and apply configuration on the generic service nodes:

hpc-config-push && clush -bg service hpc-config-apply

12.2. Clara configuration

Clara has dedicated configuration for its virt plugin. This configuration is set with the following

two hashes in the cluster specific layer of the hiera repository:

clara::virt_options:
 'nodegroup:default':
 'default': 'true'
 'nodes': 'fbservice1,fbservice2,fbservice3,fbservice4'
 'pool:default':
 'default': 'false'
 'pool:rbd-pool':
 'default': 'true'
 'vol_pattern': '{vm_name}_{vol_role}'
 'template:default':
 'default': 'true'
 'xml': 'domain_default_template.xml'
 'vol_roles': 'system'
 'vol_role_system_capacity': '60000000000'
 'networks': 'administration'

clara::virt_tpl_hpc_files:
 '/etc/clara/templates/vm/domain_default_template.xml':
 source: "%{::private_files_dir}/virt/domain_default_template.xml"

The clara::virt_options hash notably specifies the list of generic services nodes that

hosts the virtual machines and the domain templates and parameters associated to each

service virtual machine. For the moment, only the default domain template and parameters are

set. The second hash clara::virt_tpl_hpc_files defines the templates of Libvirt XML

domains definitions. In this example, there is one default domain XML template for all virtual

machines which should be fine for most Scibian HPC clusters.

The domain XML template must be located in $ADMIN/hpc-

privatedata/files/$CLUSTER/$AREA/virt/domain_default_template.xml, where

© Scibian Projet — v1.9, 2019-04-05

80 | 12.2. Clara configuration

$AREA is the area of the generic service nodes. Here is a full example of this file:

<domain type='kvm'>
 <name>{{ name }}</name>
 <memory unit='KiB'>{{ memory_kib }}</memory>
 <currentMemory unit='KiB'>{{ memory_kib }}</currentMemory>
 <vcpu placement='static'>{{ core_count }}</vcpu>
 <resource>
 <partition>/machine</partition>
 </resource>
 <os>
 <type arch='x86_64' machine='pc-i440fx-2.1'>hvm</type>
 <bootmenu enable='yes'/>
 <boot dev='hd'/>
 <boot dev='network'/>
 </os>
 <features>
 <acpi/>
 <apic/>
 <pae/>
 </features>
 <cpu mode='host-model' match='exact'> </cpu>
 <clock offset='utc'>
 <timer name='rtc' tickpolicy='catchup'/>
 <timer name='pit' tickpolicy='delay'/>
 <timer name='hpet' present='no'/>
 </clock>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <pm>
 <suspend-to-mem enabled='no'/>
 <suspend-to-disk enabled='no'/>
 </pm>
 <devices>
 <emulator>/usr/bin/kvm</emulator>
 <disk type='network' device='disk'>
 <source protocol='rbd' name='{{ volumes.system.path }}'>
 <host name='<ip_mon_server_1>' />
 <host name='<ip_mon_server_2>' />
 <host name='<ip_mon_server_3>' />
 </source>
 <auth username='libvirt'>
 <secret type='ceph' uuid='<uuid>'/>
 </auth>
 <target dev='vda' bus='virtio'/>
 <alias name='virtio-disk0'/>
 </disk>
 <disk type='block' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <backingStore/>
 <target dev='hda' bus='ide'/>
 <readonly/>
 <alias name='ide0-0-0'/>
 </disk>
 <controller type='usb' index='0' model='ich9-ehci1'>
 <alias name='usb0'/>
 </controller>
 <controller type='usb' index='0' model='ich9-uhci1'>
 <alias name='usb0'/>
 <master startport='0'/>
 </controller>
 <controller type='usb' index='0' model='ich9-uhci2'>
 <alias name='usb0'/>
 <master startport='2'/>

© Scibian Projet — v1.9, 2019-04-05

12.2. Clara configuration | 81

 </controller>
 <controller type='usb' index='0' model='ich9-uhci3'>
 <alias name='usb0'/>
 <master startport='4'/>
 </controller>
 <controller type='pci' index='0' model='pci-root'>
 <alias name='pci.0'/>
 </controller>
 <controller type='ide' index='0'>
 <alias name='ide0'/>
 </controller>
 <controller type='virtio-serial' index='0'>
 <alias name='virtio-serial0'/>
 </controller>
 {% for network_name, network in networks.iteritems() %}
 <interface type='network'>
 <mac address='{{ network.mac_address }}'/>
 <source network='{{ network_name }}'/>
 <model type='virtio'/>
 </interface>
 {% endfor %}
 <!--
 <serial type='tcp'>
 <source mode='bind' host='{{ serial_tcp_host }}' service='{{ serial_tcp_port
}}'/>
 <protocol type='telnet'/>
 <target port='0'/>
 <alias name='serial0'/>
 </serial>
 -->
 <serial type='pty'>
 <target port='0'/>
 <alias name='serial0'/>
 </serial>
 <channel type='spicevmc'>
 <target type='virtio' name='com.redhat.spice.0'/>
 </channel>
 <input type='tablet' bus='usb'>
 <alias name='input0'/>
 </input>
 <input type='mouse' bus='ps2'/>
 <input type='keyboard' bus='ps2'/>
 <graphics type='spice' port='5901' autoport='yes' listen='127.0.0.1'>
 <listen type='address' address='127.0.0.1'/>
 </graphics>
 <sound model='ich6'>
 <alias name='sound0'/>
 </sound>
 <video>
 <model type='qxl' ram='65536' vram='65536' heads='1'/>
 <alias name='video0'/>
 </video>
 <redirdev bus='usb' type='spicevmc'>
 <alias name='redir0'/>
 </redirdev>
 <redirdev bus='usb' type='spicevmc'>
 <alias name='redir1'/>
 </redirdev>
 <redirdev bus='usb' type='spicevmc'>
 <alias name='redir2'/>
 </redirdev>
 <redirdev bus='usb' type='spicevmc'>
 <alias name='redir3'/>
 </redirdev>
 <memballoon model='virtio'>
 <alias name='balloon0'/>
 </memballoon>

© Scibian Projet — v1.9, 2019-04-05

82 | 12.2. Clara configuration

 <rng model='virtio'>
 <backend model='random'>/dev/random</backend>
 <alias name='rng0'/>
 </rng>
 </devices>
</domain>

In this example, the following values must be replaced:

• <ip_mon_server_*> are the static IP addresses of the Ceph MON servers on the

administration network.

• <uuid> is the UUID for Libvirt Ceph RBD secret generated in the previous sub-section.

Deploy these new settings by pushing and applying the configuration on the admin node:

hpc-config-push && hpc-config-apply -v

12.3. Virtual machine definitions

Now that Libvirt and Clara virt plugin are properly setup, the various service virtual machines

can be defined. The steps to define the service virtual machines are mostly generic and

common to all of them. As an example for this documentation, the two service virtual machines

fbdoe[1-2] will be defined.

Optionally, define specific boot_params for the virtual machines in $ADMIN/hpc-

privatedata/hieradata/$CLUSTER/cluster.yaml if the defaults parameters are not

appropriate:

boot_params:
 [...]
 fbdoe[1-2]:
 disk: 'disk'
 ipxebin: 'ipxe_noserial.bin'

Also, in the same file, an additional domain template and parameters association can be

appended to the clara::virt_options for these new virtual machines, if the default domain

parameters are not appropriate:

clara::virt_options:
 [...]
 'template:proxy':
 'vm_names': 'fbdoe[1-2]'
 'xml': 'domain_default_template.xml'
 'vol_roles': 'system'
 'vol_role_system_capacity': '60000000000'
 'networks': 'administration,wan'
 'core_count': '16'
 'memory_kib': '16777216'

© Scibian Projet — v1.9, 2019-04-05

12.3. Virtual machine definitions | 83

In this example, the following settings are overriden from the defaults:

• the virtual block storage device has a size of 60GB,

• 2 network devices attached to the administration and wan networks,

• 16 virtual CPU cores,

• 16GB of RAM.

Then, the new role doe must be defined in file $ADMIN/hpc-

privatedata/hieradata/$CLUSTER/roles/doe.yaml with all the appropriate profiles.

Push and apply configuration on admin node:

hpc-config-push && hpc-config-apply -v

Extract MAC address of the virtual machine on the administration network:

clara virt getmacs <VM>

Then add the network settings of the virtual machines in the master_network hash with their

MAC addresses:

master_network:
 fbdoe1:
 fqdn: "fbdoe1.%{hiera('domain')}"
 networks:
 administration:
 'DHCP_MAC': 'aa:bb:cc:dd:ee:0a'
 'IP': '10.1.0.11'
 'device': 'eno0'
 'hostname': 'fbdoe1'
 wan:
 'IP': '10.3.0.11'
 'device': 'eno1'
 'hostname': 'wanfbdoe1'
 fbdoe2:
 fqdn: "fbdoe2.%{hiera('domain')}"
 networks:
 administration:
 'DHCP_MAC': 'aa:bb:cc:dd:ee:0b'
 'IP': '10.1.0.12'
 'device': 'eno0'
 'hostname': 'fbdoe2'
 wan:
 'IP': '10.3.0.12'
 'device': 'eno1'
 'hostname': 'wanfbdoe2'

Eventually, virtual IP addresses can also be defined for the virtual machines in the vips hash of

the same file.

Generate the SSH host keys in synchronization with the master_network:

© Scibian Projet — v1.9, 2019-04-05

84 | 12.3. Virtual machine definitions

puppet-hpc/scripts/sync-ssh-hostkeys.sh hpc-privatedata $CLUSTER

Push and apply the new configuration on the generic service nodes:

hpc-config-push && clush -bg service hpc-config-apply -v

Define the new virtual machines with Clara on the generic service node of your choice, for

example fbservice1:

clara virt define fbdoe[1-2] --host=fbservice1

NOTE
The choice of the generic service node is not critical as the service virtual

machines can be migrated from one generic service node to another at any

time.

Then start the virtual machine by wiping its virtual block storage devices and boot in PXE mode:

clara virt start fbdoe[1-2] --wipe

Eventually, watch the serial console with:

ssh -t fbservice1 -- virsh console fbdoe1

12.4. Required virtual machines

You are free to define the service virtual machines you want on Scibian HPC clusters. The

service virtual machines can run any software services you would like. However, some specific

generic virtual machines are required in the reference architecture to run some mandatory

additional services.

The required service virtual machines are:

• two (or more) proxy virtual machines with the auth::replica profile for managing the

LDAP directory replica. The installation of the LDAP directory replica of the proxy nodes is

documented in Section 13.1, “Directory replica” of the LDAP Authentication section of this

installation procedure.

• two batch virtual machines with the jobsched::server and db::server profiles for

Slurm controller, SlurmDBD accounting service and MariaDB galera database. The

installation of the Slurm server-side components on the batch nodes is documented in

Chapter 14, Slurm.

• two p2p virtual machines with the p2p::seeder, p2p::tracker and http::diskless

© Scibian Projet — v1.9, 2019-04-05

12.4. Required virtual machines | 85

profiles for serving files to boot diskless nodes with Bittorrent. The installation of the p2p

nodes is pretty straightforward as long as the required profiles are enabled. The creation of

the diskless environment is documented in Section 15.1, “Diskless image generation” of the

Frontend and compute nodes section of the installation procedure.

© Scibian Projet — v1.9, 2019-04-05

86 | 12.4. Required virtual machines

Chapter 13. LDAP Authentication

13.1. Directory replica

User authentication on Scibian HPC clusters is based on LDAP directory using ldaps protocol

(LDAP over SSL/TLS). This protocol requires the LDAP replica to have valid SSL certificate and

asymmetric keys.

For production use, it is recommended to obtain a certificate signed by a valid PKI CA [7: Public

Key Infrastructure Certicate of Authority, an entity that issues digital certificates], either a public

CA on the Internet or a CA internal to your organization. Otherwise, it is possible to use self-

signed certificates.

Copy the private key and the certificate under the following paths:

• certificate: $ADMIN/hpc-

privatedata/files/$CLUSTER/cluster/auth/$CLUSTER_ldap.crt

• private key: $ADMIN/hpc-

privatedata/files/$CLUSTER/$AREA/auth/$CLUSTER_ldap.key

Where $AREA is the area of the LDAP replica nodes (ex: default or infra).

Encrypt these files with clara enc plugin:

clara enc $ADMIN/hpc-privatedata/files/$CLUSTER/cluster/auth/$CLUSTER_ldap.crt
clara enc $ADMIN/hpc-privatedata/files/$CLUSTER/$AREA/auth/$CLUSTER_ldap.key

Remove the unencrypted files:

rm $ADMIN/hpc-privatedata/files/$CLUSTER/cluster/auth/$CLUSTER_ldap.crt
rm $ADMIN/hpc-privatedata/files/$CLUSTER/$AREA/auth/$CLUSTER_ldap.key

Then, append the auth::replica profile and set certificate owner to openldap in the proxy

role:

© Scibian Projet — v1.9, 2019-04-05

13.1. Directory replica | 87

--- a/hieradata/foobar/roles/proxy.yaml
+++ b/hieradata/foobar/roles/proxy.yaml
@@ -14,7 +14,7 @@ profiles:
 # Proxy
 - profiles::ntp::client
 - profiles::network::wan_nat
+ - profiles::auth::replica
 - profiles::postfix::relay
 - profiles::ha::base
 - profiles::hardware::admin_tuning
@@ -30,3 +30,24 @@ profiles:

 profiles::network::gw_connect: 'wan'
 shorewall::ip_forwarding: true
+
+certificates::certificates_owner: 'openldap

Push and apply the configuration on the proxy nodes:

hpc-config-push && clush -bg proxy hpc-config-apply -v

Finally, follow the steps documented in Chapter 17, LDAP bootstrap.

13.2. Clients setup

Once the LDAP replica are bootstrapped and operational, it is possible to setup NSS LDAP

backend and PAM LDAP authentication on the nodes.

On Scibian HPC clusters, NSS LDAP backend and PAM authentication over LDAP are both

setup with the same auth::client profile. This profile must be used in combination with the

access::base profile. This profile controls the remote access rules to the nodes. By default,

the profile prevents remote access to the nodes with LDAP accounts. The access rules must

explicitely whitelist users and/or administrators to allow remote access with SSH.

There are two main access whitelist parameters:

• profiles::access:base_options is the list of permanent access rules.

• profiles::access:production_options is the list of access rules disabled in

maintenance mode.

The administrators related access rules must be listed in the base_options while the users

related access rules must only be present in the production_options list. This way, only

administrators can access the HPC cluster in maintenance mode. For example:

profiles::access::base_options:
 - "+ : (admins) : ALL"
profiles::access::production_options:
 - "+ : (grpusers1) : ALL"
 - "+ : (grpusers2) : ALL"

© Scibian Projet — v1.9, 2019-04-05

88 | 13.2. Clients setup

These parameters must be set in the roles specific layer of the hiera repository as access rules

depends on the role of the nodes. For example, users may access the frontend nodes but not

the admin node.

Additionally, it is also possible to setup sudo rules with the sudo::base profile and the

sudo::sudo_config_opts list. This parameter is basically a list of sudo rules. For example,

to allow the group of administrator to sudo any command on the admin node, add the following

excerpt to file $ADMIN/hpc-privatedata/hieradata/$CLUSTER/roles/admin.yaml:

profiles::sudo::sudo_config_opts:
 - "%admins ALL = (ALL) ALL"

By default, the PAM and NSS LDAP backend connect to the HPC cluster internal LDAP replica.

This replica is hosted by service virtual machine. In order to make LDAP authentication on the

admin nodes and generic service nodes possible for the administrators when the virtual

machines are offline (typically during maintenances), it is possible to add the following

parameter in the associated roles:

profiles::auth::client::external_ldap: true

This way, the nodes will connect to the organization reference LDAP directory instead of the

internal LDAP replica.

Push and apply the configuration on all the affected nodes with:

hpc-config-push && clush -bg all hpc-config-apply

© Scibian Projet — v1.9, 2019-04-05

13.2. Clients setup | 89

Chapter 14. Slurm

Slurm workload manager is distributed among the HPC cluster nodes with multiple daemons

and clients software. On Scibian HPC clusters, the server part of Slurm, ie. the controller and

the accounting services, run in high-availability mode on the batch nodes. These components

are managed by the jobsched::server. The batch nodes also need the db::server, and

the ceph::client or nfs::mount that respectively setup the MariaDB galera RDBMS [8:

Relational Database Management System], and CephFS or NFS filesystem client.

14.1. Base Configuration

Slurm communications between nodes are secured using Munge which is based on a secret

shared key. Generate this munge key with the following command:

mkdir -p $ADMIN/hpc-privatedata/files/$CLUSTER/cluster/munge
dd if=/dev/urandom bs=1 count=1024 > \
 $ADMIN/hpc-privatedata/files/$CLUSTER/cluster/munge/munge.key

Encrypt the key using Clara:

clara enc encode $ADMIN/hpc-privatedata/files/$CLUSTER/cluster/munge/munge.key

Remove the unencrypted key:

rm $ADMIN/hpc-privatedata/files/$CLUSTER/cluster/munge/munge.key

Setup the nodes and partitions managed by Slurm in the slurm::partitions_options

hash in the cluster specific layer of the Hiera repository. For example:

slurm::partitions_options:
 - 'NodeName=fbcn[01-04] Sockets=2 CoresPerSocket=14 RealMemory=64000
State=UNKNOWN'
 - 'NodeName=fbgn01 Sockets=2 CoresPerSocket=4 RealMemory=64000 Gres=gpu:k80:2
State=UNKNOWN'
 - 'PartitionName=cn Nodes=fbcn[01-04] Default=YES MaxTime=INFINITE State=UP'
 - 'PartitionName=gn Nodes=fbgn01 MaxTime=INFINITE State=UP'
 - 'PartitionName=all Nodes=fbcn[01-04],fbgn01 MaxTime=INFINITE State=UP'

Please refer to Slurm documentation for more details about these settings.

In the same, setup the LDAP/SlurmDBD users synchronization utility, for example:

© Scibian Projet — v1.9, 2019-04-05

90 | 14.1. Base Configuration

https://slurm.schedmd.com/

profiles::jobsched::server::sync_options:
 main:
 cluster: "%{::cluster_name}"
 org: "%{hiera('org')}"
 policy: 'global_account'
 global_account:
 name: 'users'
 desc: 'Main users account'

Please refer to the example configuration file for more details.

14.2. Shared State Location

Still in the cluster specific layer of the Hiera repository, setup the shared storage directory.

14.2.1. CephFS

If you are using CephFS, configure the client mount with the following excerpt:

profiles::jobsched::server::ceph::keys:
 client:
 key: "%{hiera('ceph_client_admin_key')}"

profiles::jobsched::server::ceph::mounts:
 slurmctld:
 servers: # list of Ceph MON servers
 - fbservice2
 - fbservice3
 - fbservice4
 device: '/slurmctld'
 mountpoint: "%{hiera('slurm_state_save_loc')}"
 user: 'admin'
 key: 'client'
 mode: 'kernel'

14.2.2. NFS

If you are using an NFS HA Server:

profiles::jobsched::server::ceph::enabled: false

profiles::jobsched::slurm_config_options:
 [...]
 StateSaveLocation: '/admin/restricted/backup/slurm_state_save'

For NFS HA, at the role level, configure the NFS mount:

© Scibian Projet — v1.9, 2019-04-05

14.2. Shared State Location | 91

https://github.com/edf-hpc/slurm-llnl-misc-plugins/blob/master/sync-accounts/sync-accounts.conf

profiles:
 [...]
 - profiles::nfs::mounts

profiles::nfs::to_mount:
 home:
 server: 'fbnas'
 exportdir: '/srv/admin'
 mountpoint: '/admin'
 options: 'bg,rw,hard,vers=4'

14.3. Miscellaneous Tuning

Eventually, it is possible to tune Slurm, GRES, SlurmDBD, job submit LUA script with the

following parameters:

profiles::jobsched::slurm_config_options:
 PrivateData: 'jobs,reservations,usage'
 AccountingStorageEnforce: 'associations,limits,qos'
 GresTypes: 'gpu'
 SlurmCtldDebug: 'verbose'
 PriorityFlags: 'FAIR_TREE'

slurm::gres_options:
 - 'NodeName=fbgn01 Name=gpu Type=k80 File=/dev/nvidia0'

profiles::jobsched::server::slurmdbd_config_options:
 PrivateData: 'accounts,jobs,reservations,usage,users'

slurm::ctld::submit_lua_options:
 CORES_PER_NODE: '28'

14.4. MariaDB security hardening

14.4.1. Settings

By default, the MariaDB server is setup with parameters to harden its security. Notably, the

following settings are deployed by default:

• max_user_connections to 100 (default is 0 ie. unlimited), in order to prevent one user

from grabbing all 151 available max_connections (default MariaDB value).

• secure_file_priv is set to an empty value in order to disable potentially dangerous

command LOAD DATA INFILE.

• the client histfile ~/.mysql_history is disabled by default.

Obviously, these settings can be altered in the hiera repository. Here is an example yaml excerpt

to change these default values:

© Scibian Projet — v1.9, 2019-04-05

92 | 14.3. Miscellaneous Tuning

mariadb::disable_histfile: false
mariadb::galera_conf_options:
 mysqld:
 max_user_connections: '0' # unlimited
 secure_file_priv: '/'

14.4.2. TLS/SSL connections

It is also possible to setup SSL/TLS on MariaDB. First, create the ssl directory if missing in the

files hierarchy of the cluster:

mkdir -p $ADMIN/hpc-privatedata/files/$CLUSTER/$AREA/ssl

Where $AREA is the area of the MariaDB servers.

Generate and copy host SSL certificate and encryption key to the following paths respectively:

• $ADMIN/hpc-privatedata/files/$CLUSTER/$AREA/ssl/ssl-cert-batch.pem

• $ADMIN/hpc-privatedata/files/$CLUSTER/$AREA/ssl/ssl-cert-batch.key

Encrypt the key using Clara and remove unencrypted file:

clara enc encode $ADMIN/hpc-privatedata/files/$CLUSTER/$AREA/ssl/ssl-cert-batch.key
rm $ADMIN/hpc-privatedata/files/$CLUSTER/$AREA/ssl/ssl-cert-batch.key

Finally, set the following mariadb module parameter to true either at the organization layer or

the cluster layer of the Hiera repository, according to your need:

mariadb::enable_ssl: true

14.5. Bootstrap

Some software components need to be manually bootstrapped on the batch nodes before being

started:

• MariaDB database

• SlurmDBD service

The shared storage can be on CephFS or on NFS HA, the suitable bootstrap procedure must be

performed:

• CephFS filesystem

• NFS HA filesystem

© Scibian Projet — v1.9, 2019-04-05

14.5. Bootstrap | 93

Please refer to the Bootstrap procedure chapter of this document for all details.

14.6. Configuration deployment

Once the configuration is set in the Hiera repository, push and apply the configuration on the

admin and batch nodes:

hpc-config-push && clush -bg admin,batch hpc-config-apply -v

Check Slurm is available by running the sinfo command on the admin node. If the command

report the nodes and partitions state without error, Slurm is properly running.

© Scibian Projet — v1.9, 2019-04-05

94 | 14.6. Configuration deployment

Chapter 15. Frontend and compute nodes

On Scibian HPC clusters, the frontend and compute nodes download at boot time a system

image in deployed in RAM which notably gives possibility to have diskless nodes. For more

details about this technique, please refer to Section 5.1.3, “Diskless boot” in the Advanced

Topics section of the Architecture chapter of this document. The diskless image must be

generated with Clara images plugin on the admin node before booting the frontend and the

compute nodes. These steps are explained in the following sub-sections.

15.1. Diskless image generation

The diskless image is generated by the Clara images plugin. This plugin need some

configuration in the cluster specific layer of the Hiera repository. Here is an example of such

configuration:

© Scibian Projet — v1.9, 2019-04-05

15.1. Diskless image generation | 95

clara_images_target_dir: "%{hiera('admin_dir')}/scibian9"

clara::common_options:
 allowed_distributions:
 value: 'scibian9'

clara::images_options:
 extra_packages_image: "scibian-archive-keyring,hpc-config-apply,scibian-hpc-
commons"
 packages_initrd: "scibian-diskless-initramfs-config"
 etc_hosts:
"10.1.0.101:vipfbservice1,10.1.0.101:apt.service.virtual,10.1.0.10:fbadmin1"

clara::config_options:
 images-scibian9:
 debiandist: 'stretch'
 debmirror:
"http://%{hiera('debian_mirror_server')}/%{hiera('debian_mirror_dir')}"
 kver: "4.9.0-4-amd64"
 list_repos: "deb [arch=amd64,i386]
http://%{hiera('debian_mirror_server')}/"
 trg_dir: "%{hiera('clara_images_target_dir')}"
 trg_img:
"%{hiera('clara_images_target_dir')}/scibian9.squashfs"
 preseed_file:
"%{hiera('clara_images_config_dir')}/scibian9/preseed"
 package_file:
"%{hiera('clara_images_config_dir')}/scibian9/packages"
 script_post_image_creation:
"%{hiera('clara_images_config_dir')}/scibian9/post.sh"
 list_files_to_install:
"%{hiera('clara_images_config_dir')}/scibian9/filelist"
 dir_files_to_install:
"%{hiera('clara_images_config_dir')}/scibian9/files_dir"
 foreign_archs: 'i386'

clara::live_dirs:
 "%{hiera('clara_images_config_dir')}":
 ensure: directory
 "%{hiera('clara_images_config_dir')}/scibian9":
 ensure: directory
 "%{hiera('clara_images_config_dir')}/scibian9/files_dir":
 ensure: directory

clara::live_files:
 "%{hiera('clara_images_config_dir')}/scibian9/post.sh":
 source: "%{::private_files_dir}/boot/live/scibian9/post.sh"
 mode: '755'
 "%{hiera('clara_images_config_dir')}/scibian9/preseed":
 source: "%{::private_files_dir}/boot/live/scibian9/preseed"
 "%{hiera('clara_images_config_dir')}/scibian9/filelist":
 source: "%{::private_files_dir}/boot/live/scibian9/filelist"
 "%{hiera('clara_images_config_dir')}/scibian9/files_dir/resolv.conf":
 source: "%{::private_files_dir}/boot/live/scibian9/files_dir/resolv.conf"
 "%{hiera('clara_images_config_dir')}/scibian9/files_dir/no-cache":
 source: "%{::private_files_dir}/boot/live/scibian9/files_dir/no-cache"
 "%{hiera('clara_images_config_dir')}/scibian9/files_dir/no-recommends":
 source: "%{::private_files_dir}/boot/live/scibian9/files_dir/no-recommends"
 "%{hiera('clara_images_config_dir')}/scibian9/files_dir/interfaces":
 source: "%{::private_files_dir}/boot/live/scibian9/files_dir/interfaces"
 "%{hiera('clara_images_config_dir')}/scibian9/files_dir/proxy":
 source: "%{::private_files_dir}/boot/live/scibian9/files_dir/proxy"
 "%{hiera('clara_images_config_dir')}/scibian9/files_dir/mk_ipmi_dev.sh":
 source: "%{::private_files_dir}/boot/live/scibian9/files_dir/mk_ipmi_dev.sh"
 "%{hiera('clara_images_config_dir')}/scibian9/files_dir/hpc-config.conf":
 source: "%{::private_files_dir}/boot/live/scibian9/files_dir/hpc-config.conf"

© Scibian Projet — v1.9, 2019-04-05

96 | 15.1. Diskless image generation

The clara::live_files parameter contains a list of files deployed under the configuration

directory of Clara. Their files are:

• $ADMIN/hpc-

privatedata/files/$CLUSTER/$AREA/boot/live/scibian9/post.sh (where

$AREA is the area of the admin node) is a post-generation script run by Clara inside the

image environment:

#!/bin/bash -e

Fix Timezone data
echo GMT > /etc/timezone
dpkg-reconfigure -f noninteractive tzdata

Fix hostname
echo "localhost" > /etc/hostname

Create needed directory for Puppet
mkdir -p /var/lib/puppet/facts.d/

Enable setuid on /bin/ping to let users run it because AUFS does not support
xattr and therefore capabilities.
chmod 4755 /bin/ping

This script can notably be used to customize the image or set files and directories that are

required very early in the live boot process before Puppet run.

• $ADMIN/hpc-

privatedata/files/$CLUSTER/$AREA/boot/live/scibian9/preseed contains

the answers to the Debconf packages configuration questions:

console-common console-data/keymap/full select en
console-common console-data/keymap/policy select Select keymap from full list
console-data console-data/keymap/full select en
console-data console-data/keymap/policy select Select keymap from full list
console-setup console-setup/charmap47 select UTF-8
locales locales/default_environment_locale select en_US.UTF-8
locales locales/locales_to_be_generated multiselect en_US.UTF-8 UTF-8, en_US ISO-
8859-1
keyboard-configuration keyboard-configuration/layout select English
keyboard-configuration keyboard-configuration/variant select English
keyboard-configuration keyboard-configuration/unsupported_layout boolean true
keyboard-configuration keyboard-configuration/model select International (with dead
keys)
keyboard-configuration keyboard-configuration/layoutcode string intl
keyboard-configuration keyboard-configuration/ctrl_alt_bksp boolean false
keyboard-configuration keyboard-configuration/variantcode string oss
keyboard-configuration keyboard-configuration/modelcode string pc105
postfix postfix/main_mailer_type select No configuration
tzdata tzdata/Areas select Europe
tzdata tzdata/Zones/Europe select London
libpam-runtime libpam-runtime/conflicts error
mdadm mdadm/start_daemon boolean false
postfix postfix/mailname string localdomain

• $ADMIN/hpc-

© Scibian Projet — v1.9, 2019-04-05

15.1. Diskless image generation | 97

privatedata/files/$CLUSTER/$AREA/boot/live/scibian9/filelist specifies

the list of files to copy inside the generated image:

hpc-config.conf etc/ 0644
resolv.conf etc/ 0644
proxy etc/apt/apt.conf.d/ 0644
no-cache etc/apt/apt.conf.d/ 0644
no-recommends etc/apt/apt.conf.d/ 0644
interfaces etc/network/ 0644
mk_ipmi_dev.sh usr/local/sbin/ 0755

All the files under the files_dir directory are copied without modification into the image. The

required files are:

• $ADMIN/hpc-
privatedata/files/$CLUSTER/$AREA/boot/live/scibian9/files_dir/resolv

.conf is the configuration file for DNS solvers with the virtual IP addresses of the cluster’s

internal DNS servers:

domain foobar.hpc.example.org
search foorbar.hpc.example.org hpc.example.org
nameserver 10.1.0.101
nameserver 10.1.0.102
nameserver 10.1.0.103
nameserver 10.1.0.104

• $ADMIN/hpc-
privatedata/files/$CLUSTER/$AREA/boot/live/scibian9/files_dir/no-

cache disables packages local caching in APT package manager:

Dir::Cache::srcpkgcache "";
Dir::Cache::pkgcache "";

• $ADMIN/hpc-
privatedata/files/$CLUSTER/$AREA/boot/live/scibian9/files_dir/no-

recommends disables recommends soft-dependencies installation in APT package

manager:

APT::Install-Recommends "0";

• $ADMIN/hpc-
privatedata/files/$CLUSTER/$AREA/boot/live/scibian9/files_dir/interf

aces is a default network interfaces configuration file to enable DHCP on eno0 interface:

auto lo
iface lo inet loopback

auto eno0
iface eno0 inet dhcp

© Scibian Projet — v1.9, 2019-04-05

98 | 15.1. Diskless image generation

• $ADMIN/hpc-

privatedata/files/$CLUSTER/$AREA/boot/live/scibian9/files_dir/proxy

setup cluster’s internal packages proxy in APT configuration:

Acquire::http::Proxy "http://apt.service.virtual:3142";

• $ADMIN/hpc-
privatedata/files/$CLUSTER/$AREA/boot/live/scibian9/files_dir/mk_ipm

i_dev.sh is a workaround script to create the BMC devices inodes the /dev virtual

filesystem very early in the diskless nodes boot process:

#!/bin/sh

DEVICE='/dev/ipmi0'

if [-e ${DEVICE}]
then
 exit 0
else
 MAJOR=$(grep ipmidev /proc/devices | awk '{print $1}')
 mknod --mode=0600 ${DEVICE} c ${MAJOR} 0
fi

• $ADMIN/hpc-
privatedata/files/$CLUSTER/$AREA/boot/live/scibian9/files_dir/hpc-

config.conf is a configuration file for Puppet-HPC hpc-config-apply utility:

[DEFAULT]
environment=production
source=http://s3-system.service.virtual:7480/hpc-config
keys_source=http://secret.service.virtual:1216
Using /var/tmp to more easily manipulate /tmp mount
point during a puppet run.
tmpdir=/var/tmp

Once all these files have been added to the cluster specific files directory, push and apply the

configuration on the admin node:

hpc-config-push && hpc-config-apply

Now that Clara is setup, the image can be created with the following command:

clara images create scibian9

Also create the associated initrd environment:

clara images initrd scibian9

© Scibian Projet — v1.9, 2019-04-05

15.1. Diskless image generation | 99

Deploy the generate image and initrd to the p2p nodes with:

clush -g p2p mkdir -p /var/www/diskless/scibian9
clush -g p2p \
 --copy /var/cache/admin/scibian9/{initrd-4.9.0-4-amd64,vmlinuz-4.9.0-4-amd64} \
 --dest /var/www/diskless/scibian9
clush -g p2p \
 --copy /var/cache/admin/scibian9/{scibian9.squashfs.torrent,scibian9.squashfs} \
 --dest /var/www/diskless/scibian9

Restart peer-to-peer services to load new files:

clara p2p restart

The diskless environment is finally ready and available to frontend and compute nodes.

15.2. Boot nodes

Before booting the frontend and compute nodes, they must be declared in the internal

configuration repository in the first place. Append the nodes to the boot_params hash in

$ADMIN/hpc-privatedata/hieradata/$CLUSTER/cluster.yaml:

boot_params:
 [...]
 fbfront[1-2],fbgn01:
 cowsize: '8G'
 media: 'ram'
 fbcn[01-04]:
 media: 'ram'

The cowsize must be increased to 8GB from default 2GB on frontend and graphical nodes

because these nodes need much more packages to be installed at boot time.

Then define the roles associated to the frontend and the compute nodes, for example front,

cn and gn. For these roles definitions, keep in mind the following rules:

• The frontend role must include the jobsched::client while the compute nodes require

the jobsched::exec profile instead.

• The profiles::environment::userspace::packages must include the scibian-

hpc-frontend meta-package in the frontend nodes role, scibian-hpc-compute meta-

package in the standard compute nodes and scibian-hpc-graphical meta-package on

the graphical nodes.

The nodes must be added into the master_network hash in file $ADMIN/hpc-

privatedata/hieradata/$CLUSTER/network.yaml with all their network interfaces and

the MAC addresses of their network interface connected to the administration and their BMC.

Generate all the SSH host keys:

© Scibian Projet — v1.9, 2019-04-05

100 | 15.2. Boot nodes

puppet-hpc/scripts/sync-ssh-hostkeys.sh hpc-privatedata $CLUSTER

Push and apply the configuration to the admin and generic service nodes:

hpc-config-push && clush -bg admin,service hpc-config-apply -v

Finally, boot all the nodes in PXE mode with Clara:

clara ipmi pxe @front,@cn,@gn
clara ipmi boot @front,@cn,@gn

© Scibian Projet — v1.9, 2019-04-05

15.2. Boot nodes | 101

Chapter 16. Optional features

16.1. Tuning

TBD

16.2. Firewall

TBD

16.3. Kerberos

TBD

16.4. Internal APT repository

TBD

16.5. Storage Multipath

TBD

16.6. Monitoring

TBD

16.7. Metrics

TBD

16.8. HPCStats

TBD

16.9. Slurm WCKeys

TBD

© Scibian Projet — v1.9, 2019-04-05

102 | 16.1. Tuning

16.10. Slurm-web REST API

Slurm-web is both a web interface and REST API service to get and visualize the current status

of the jobs and ressources managed by Slurm.

Puppet-HPC is able to deploy the REST API component of Slurm.

mkdir hpc-privatedata/files/$CLUSTER/$AREA/slurmweb
head -c 48 /dev/urandom | base64 > files/$CLUSTER/$AREA/slurmweb/secret.key
clara enc encode hpc-privatedata/files/$CLUSTER/$AREA/slurmweb/secret.key
rm hpc-privatedata/files/$CLUSTER/$AREA/slurmweb/secret.key

Where $AREA is the area of the nodes hosting the REST API.

Then, define XML cluster racking description file hpc-

privatedata/files/$CLUSTER/$AREA/slurmweb/racks.xml according to Slurm-web

documentation.

Add profiles::http::slurmweb profile in the role of the nodes hosting the REST API.

Finally, push and apply the new configuration on the admin node and on the nodes hosting the

profile:

hpc-config-push
hpc-config-apply
clush -bg admin,hpc_profiles:http::slurm-web \
 hpc-config-apply -v

16.11. NFS High-Availability

TBD

16.12. Slurm power management

Generate and encrypt the SSH key used to poweroff the nodes from the batch nodes:

mkdir hpc-privatedata/files/$CLUSTER/$AREA/pwmgt
ssh-keygen -N '' -C root@pwmgt -f hpc-privatedata/files/$CLUSTER/
$AREA/pwmgt/id_rsa_slurm
clara enc encode hpc-privatedata/files/$CLUSTER/$AREA/pwmgt/id_rsa_slurm
rm hpc-privatedata/files/$CLUSTER/$AREA/pwmgt/id_rsa_slurm

Where $AREA is the area of the batch nodes.

Then add those settings in the cluster specific layer of the hiera repository:

© Scibian Projet — v1.9, 2019-04-05

16.10. Slurm-web REST API | 103

http://edf-hpc.github.io/slurm-web/
http://edf-hpc.github.io/slurm-web/installation.html#xml-racks-and-nodes-description
http://edf-hpc.github.io/slurm-web/installation.html#xml-racks-and-nodes-description

profiles::jobsched::pwmgt::enabled: true
slurmutils::pwmgt::ctld::config_options:
 ipmi:
 prefix: "%{hiera('ipmi_prefix')}"
 user: "%{hiera('ipmi_user')}"
 password: "%{hiera('ipmi_password')}"
slurmutils::pwmgt::ctld::priv_key_enc:
"%{::private_files_dir}/pwmgt/id_rsa_slurm.enc"
slurmutils::pwmgt::ctld::decrypt_passwd: "%{hiera('cluster_decrypt_password')}"

slurmutils::pwmgt::exec::pub_key: <PUBKEY>

Where <PUBKEY> is the public key in file hpc-

privatedata/files/$CLUSTER/$AREA/pwmgt/id_rsa_slurm.pub.

Finally, apply the new configuration on the batch nodes and all the compute nodes:

hpc-config-push
clush -bg batch hpc-config-apply -v
clush -bg compute hpc-config-apply -v

© Scibian Projet — v1.9, 2019-04-05

104 | 16.12. Slurm power management

Bootstrap procedures
This chapter contains all the procedures to boostrap all the crucial services for a Scibian HPC

system: LDAP, Ceph, MariaDB with Galera, SlurmDBD, etc.

© Scibian Projet — v1.9, 2019-04-05

Chapter 16. Optional features | 105

Chapter 17. LDAP bootstrap

As stated in external services section of the Reference Architecture chapter, a central LDAP

directory server external to the Scibian HPC cluster is required. The LDAP directory server on

the cluster is just is a replica of this central external server.

The Puppet-HPC openldap module expects a LDIF file containing a full dump of the LDAP

replica configuration. The easiest way to produce this bootstrap LDIF file is to install and

configure an LDAP server replica manually and dump the live configuration.

First, install an LDAP server with common LDAP utilities:

apt-get install slapd ldap-utils

Select the HDB database backend. Then, configure the base DN, the domain name, the

organization name according to your environment, and set the administration password.

Write the LDAP replication configuration LDIF file syncrepl_config.ldif, similarly to this

example:

dn: olcDatabase={1}hdb,cn=config
changetype: modify
add: olcSyncrepl
olcSyncrepl: rid=001 provider=<LDAP_SERVER_URL> bindmethod=simple timeout=0
 tls_cacert=<CA_CRT_CHAIN>
 network-timeout=0 binddn="<BIND_DN>" credentials="<BIND_PASSWORD>"
 searchbase="dc=calibre,dc=edf,dc=fr"
 schemachecking=on type=refreshAndPersist retry="60 +"
-
add: olcUpdateref
olcUpdateref: <LDAP_SERVER_URL>

Where:

• LDAP_SERVER_URL is the URL to the organization central LDAP server, ex:

ldaps://ldap.company.tld.

• If using TLS/SSL, CA_CRT_CHAIN is the absolute path to the CA certificate chain (up-to root

CA certificate), ex: /usr/local/share/ca-certificates/ca-chain.crt

• BIND_DN is the replication user DN, ex: cn=replication,dc=company,dc=tld

• BIND_PASSWORD is the password of the replication user

Inject this LDIF replication configuration file into the LDAP server:

ldapmodify -a -Y EXTERNAL -H ldapi:// -f syncrepl_config.ldif

Using the same technique, configure to your needs the indexes, ACLs, TLS/SSL, password

© Scibian Projet — v1.9, 2019-04-05

106 | Chapter 17. LDAP bootstrap

policy, kerberos, etc. Finally, generate the full LDAP config dump with:

slapcat -b cn=config > config_replica.ldif

or:

ldapsearch -Y EXTERNAL -H ldapi:/// -b cn=config > config-replica.ldif

The config_replica.ldif file must be deployed encrypted within Puppet-HPC private files

directory. Please refer to Puppet-HPC Reference Documentation for more details.

After a fresh installation the cluster’s services virtual machines that host the LDAP directory

replicas, the config_replica.ldif is deployed by Puppet and the LDAP replication must be

bootstraped with this script:

make_ldap_replica.sh

The script will ask you to confirm by typing YES and press enter.

© Scibian Projet — v1.9, 2019-04-05

Chapter 17. LDAP bootstrap | 107

Chapter 18. MariaDB/Galera bootstrap

The Puppet-HPC mariadb module configures an active/active MariaDB cluster based on galera

replication library. On the service virtual machines that host this database system, the

corresponding mariadb system service will not start unless it is already started on another

service virtual machine. If it is not running anywhere else, the service must bootstraped with this

command:

galera_new_cluster

This command starts the MariaDB service on the local host in new cluster mode. The state of

the local service can be checked with this command:

systemctl status mariabd.service

This command must report on running mysqld process. In some case, typically when a

MariaDB/Galera was not properly stopped, the command may fail and report this error:

[ERROR] WSREP: It may not be safe to bootstrap the cluster from this node. It
was not the last one to leave the cluster and may not contain all the updates.
To force cluster bootstrap with this node, edit the grastate.dat file manually
and set safe_to_bootstrap to 1 .

In this case, and if you are totally sure that MariaDB service is stopped on all nodes, the error

can be ignored with the following command:

sed -i 's/safe_to_bootstrap: 0/safe_to_bootstrap: 1/' /var/lib/mysql/grastate.dat

Then, the MariaDB/Galera cluster can be started again with galera_new_cluster.

Once the service is started on all service virtual machines, you can check the cluster replication

status with:

mysql -e "SHOW STATUS LIKE 'wsrep_cluster_size'"

This result must be the number of expected active nodes in the MariaDB/Galera cluster (ex: 2).

© Scibian Projet — v1.9, 2019-04-05

108 | Chapter 18. MariaDB/Galera bootstrap

Chapter 19. SlurmDBD bootstrap

After its first installation on the cluster, the SlurmDBD accounting database is empty. First, the

cluster must be created in the database:

sacctmgr --immediate add cluster <name>

Where <name> is the name of the cluster.

Then, once the sync-accounts utility is configured, run it to create all accounts and users:

slurm-sync-accounts

Then, it is possible to create QOS and configure fair-share depending upon your needs.

If using wckeys, they must be bootstrapped by adding the first key manually using the

sacctmgr command and then run the importation script:

sacctmgr -i add user root wckey=<init>
slurm_wckeys_setup.sh

© Scibian Projet — v1.9, 2019-04-05

Chapter 19. SlurmDBD bootstrap | 109

https://github.com/edf-hpc/slurm-llnl-misc-plugins/tree/master/sync-accounts
https://slurm.schedmd.com/qos.html
https://slurm.schedmd.com/priority_multifactor.html#fairshare

Chapter 20. Ceph

20.1. Ceph Deploy

The ceph-deploy directory is created during the initial ceph installation, to use the ceph-

deploy again or from another service or admin node, it must be recreated.

mkdir ceph-deploy
cd ceph-deploy
ceph-deploy config pull fbservice1
ceph-deploy gatherkeys fbservice1

20.2. Mon

After the reinstallation of one of the generic service nodes with a mon, it must be re-initialized.

This procedure only works on a running cluster, the initial mon creation uses another command.

From an admin node:

cd <ceph deploy directory>
ceph-deploy --overwrite-conf mon add <mon hostname>

20.3. OSD

This procedure only applies if the content of an OSD volume is lost. If the node is reinstalled

without erasing the content of the OSD volume, the configuration in puppet will be enough to

start the osd volume again.

The relevant OSD ID can be retrieved with:

ceph osd tree

Before doing this procedure, make sure the OSD is really down and not mounted on the OSD

node.

20.3.1. Removing old OSD

The old OSD must be removed from the configuration (stored by the MON).

ceph osd crush remove osd.X
ceph auth del osd.X
ceph osd rm X

© Scibian Projet — v1.9, 2019-04-05

110 | 20.1. Ceph Deploy

20.3.2. Re-creating the OSD

cd <ceph deploy directory>
ceph-deploy osd prepare clserviceY:sdb
ceph-deploy disk zap clserviceY:sdb

The OSD id and authentication key should be updated on the hiera configuration. In most cases,

the new OSD will take the same ID as the old one. You can get the new ID and the new key

with:

ceph osd tree
ceph auth print-key osd.X

20.4. CephFS

CephFS filesystem is used between the batch nodes to shared Slurm controller state. The

filesystem must be initialized before being used by Slurm.

First, mount temporarily the CephFS filesystem:

mount -t ceph -o name=admin,secretfile=/etc/ceph/client.key
fbservice2,fbservice3,fbservice4:/ /mnt

Create a subdirectory for Slurm controller, set its ownership and restrict its mode:

mkdir /mnt/slurmctld
chown slurm: /mnt/slurmctld
chmod 0700 /mnt/slurmctld

Finally, umount it:

umount /mnt

Puppet-HPC is now able to use this filesystem for Slurm on batch nodes.

© Scibian Projet — v1.9, 2019-04-05

20.4. CephFS | 111

Chapter 21. NFS HA bootstrap

The shared storage of the NFS server contains a directory that holds the state of the clients

(mainly the locks). When the shared NFS storage is created, it must be formated and this state

directory must be created.

The shared storage must be on a specific LVM Volume Group. What the PVs are for this volume

group and how they are configured depends on the hardware available.

In the following example, the PV/LV is VG_NAS/LV_NAS and is to be mounted as /srv/admin.

mkfs.ext4 /dev/VG_NAS/LV_NAS
mkdir /srv/admin
mount /dev/VG_NAS/LV_NAS /srv/admin
mkdir -p /srv/admin/restricted/state/nfs/v4recovery
umount /srv/admin

After these steps, the keepalived daemon can be started on the nodes. The MASTER node will

mount the storage and export it.

© Scibian Projet — v1.9, 2019-04-05

112 | Chapter 21. NFS HA bootstrap

Production procedures
In this chapter are listed all the technical procedures to follow for regular operations occurring

during the production phase of the supercomputer. This notably includes changing any

encryption or authentication key, changing passwords, reinstalling nodes, etc.

© Scibian Projet — v1.9, 2019-04-05

Chapter 21. NFS HA bootstrap | 113

Chapter 22. MAC address change

This procedure explains how to modify the Puppet-HPC configuration to change an hardware

Ethernet address after a motherboard replacement, for example.

First, the yaml file in the hieradata repository containing the master_network hash must be

edited to replace the old hardware address. A description of this hash can be found in the

Installation section of this guide.

The modified configuration must be pushed to the shared administration directory with the hpc-

config-push command:

hpc-config-push
INFO: creating archive /tmp/puppet-config-push/tmp_ndq0ujz/puppet-config-
environment.tar.xz
INFO: S3 push: pushing data in bucket s3-system

Then apply the configuration on the service nodes, who runs the DHCP server:

hpc-config-apply

NOTE
It is not possible to run the hpc-config-apply command on all the service

nodes at the same time exactly. A short delay must be respected as the Ceph

service can be disturbed by a restart of the network service.

© Scibian Projet — v1.9, 2019-04-05

114 | Chapter 22. MAC address change

Chapter 23. Password/keys changes

23.1. Root password

The hashed root password is stored in the variable

profiles::cluster::root_password_hash in yaml files. The value must be encrypted

using eyaml. It can be simply changed using the eyaml command.

eyaml edit cluster.yaml
...
profiles::cluster::root_password_hash: DEC::PKCS7[hashed_password]!
...

Once changed, the new configuration must be applied on all the machines of the cluster.

23.2. Root SSH key

The root SSH keys are stored in the internal repository. The privates keys must be encrypted.

The SSH public rsa key is also in the variable openssh::server::root_public_key. It is

necessary to change the files and the value of the variable at the same time. To avoid

connections problems, it is necessary to follow these steps in this order:

1. Change the keys files and the variable openssh::server::root_public_key in the

internal repository

2. Apply the configuration on all the machines exept the admin one

3. Apply the new configuration on the admin server.

NOTE
In case of desynchronization between the keys on the admin node and those

on the others nodes, it is always possible to use the root password to connect.

23.3. SSH host keys

The SSH host keys are stored, encrypted, in the internal repository. To avoid connections

problems, it is necessary to follow these steps in this order:

1. Change the keys files in the internal repository

2. Apply the configuration on all the machines of the cluster, including the admin machine

3. Delete the file /root/.ssh/known_hosts on the admin node.

4. When connecting to the nodes, /root/.ssh/known_hosts will be automatically populated if the

Scibian HPC default configuration is used.

© Scibian Projet — v1.9, 2019-04-05

23.1. Root password | 115

23.4. Eyaml keys

Replacing the eyaml PKCS7 key pair consist in reality of two actions:

1. Generate a new pair of keys (eyaml createkeys)

2. Replace all the values encoded with the old pair with ones encoded with the new pair of

keys.

NOTE

As these operations implies decoding files and re-encoding them with another

key pair, it is not possible to perform other administrative operations (like

applying the configuration on nodes) on the cluster at the same time. The

changing keys operation must be fully completed before resuming "normal"

administrative operations.

These steps must be followed in order to safely change the eyaml keys:

Save the old keys:

cp /etc/puppet/secure/keys/private_key.pkcs7.pem \
 /etc/puppet/secure/keys/private_key.pkcs7.pem.old
cp /etc/puppet/secure/keys/public_key.pkcs7.pem \
 /etc/puppet/secure/keys/public_key.pkcs7.pem.old

Copy the new keys in /etc/puppet/secure/keys/.

Decrypt all the yaml files encoded using the old keys:

eyaml decrypt \
 --pkcs7-private-key /etc/puppet/secure/keys/private_key.pkcs7.pem.old \
 --pkcs7-public-key /etc/puppet/secure/keys/public_key.pkcs7.pem.old \
 -e hieradata/<cluster>/cluster.yaml \
 > hieradata/<cluster>/cluster.decrypt.yaml

The decrypt.yaml contains all the secret in plain text. It should be removed as soon as

possible.

Encrypt the files with the new keys:

eyaml encrypt -e hieradata/<cluster>/cluster.decrypt.yaml \
 > hieradata/<cluster>/cluster.yaml
rm hieradata/<cluster>/cluster.decrypt.yaml

Remove the old saved keys from the admin node:

rm /etc/puppet/secure/keys/private_key.pkcs7.pem.old \
 /etc/puppet/secure/keys/public_key.pkcs7.pem.old

© Scibian Projet — v1.9, 2019-04-05

116 | 23.4. Eyaml keys

Create a tarball, encode it with clara enc and add it to the files directory of the internal

repository:

tar cJf /tmp/keys.tar.xz -C /etc/puppet/secure keys
clara enc encode /tmp/keys.tar.xz
mv /tmp/keys.tar.xz.enc <internal repository>/files/<cluster>/eyaml

Where:

• <internal repository> is the directory that contains the clone of the internal repository.

• <cluster> is the name of the cluster.

At this stage, the keys are now stored encrypted in the internal repository and are available

locally in the standard eyaml paths.

In the default Scibian-HPC configuration, the PKCS7 keys propagation service runs on all the

generic service nodes. First, the encoded tarball must be manually copied on the nodes:

scp <internal repository>/files/<cluster>/eyaml/keys.tar.xz <generic server
X>:/tmp

Where <generic server X> is the hostname of the generic service node.

Then apply the configuration using the new keys:

hpc-config-apply -vv --keys-source=/tmp

This will copy the eyaml PKCS7 key pair in the right directory to be serviced by the propagation

service to all others nodes when applying the puppet configuration. These last two operations

must be executed on all the generic service nodes.

Don’t forget to remove the keys from the /tmp directory on the admin node and on all the

service nodes.

rm /tmp/keys.tar.xz
clush -w @service rm /tmp/keys.tar.xz

23.5. Internal repository encoding key

NOTE

As these operations implies decrypting files and re-encrypting them with

another key, it is not possible to perform other administrative operations (like

applying the configuration on nodes) on the cluster at the same time. The

changing key operation must be fully completed before resuming "normal"

administrative operations.

© Scibian Projet — v1.9, 2019-04-05

23.5. Internal repository encoding key | 117

Replacing the AES key used to encode files in the internal repository consist in several steps.

Generate a new AES key:

openssl rand -base64 32

For each encoded file in the internal repository, it is necessary to decode it with the old key and

re-encode it with the new one.

clara enc decode <internal repository>/files/<cluster>/<filename>.enc
openssl aes-256-cbc \
 -in <internal repository>/files/<cluster>/<filename> \
 -out <filename>.enc -k <AES KEY>
rm <internal repository>/files/<cluster>/<filename>

Where:

• <internal repository> is the directory that contains the clone of the internal repository

• <cluster> is the name of the cluster

• <filename> is the path of the file to encode

• <AES KEY> is the random 256 bits key.

Using clara for both operations, decode and encode, is not possible as it support only one

AES key.

This re-encryption step can be automated with the reencode-file.sh script in the puppet-

hpc scripts dir:

cd <internal repository>/files/<cluster>
find -name "*.enc" \
 -exec <puppet-hpc path>/scripts/reencode-file.sh\
 /tmp/oldkey /tmp/newkey '{}' ';'

The files /tmp/oldkey and /tmp/newkey are files with just the old and new AES key

respectively. This script does not depend on clara but basically performs the same steps as

above.

The AES key must be placed in cluster_decrypt_password in the cluster layer of the Hiera

repository:

eyaml edit hieradata/<cluster>/cluster.eyaml

Replace the key:

© Scibian Projet — v1.9, 2019-04-05

118 | 23.5. Internal repository encoding key

cluster_decrypt_password: DEC::PKCS7[<AES KEY>]!

Apply the new configuration on the admin node, to update clara configuration:

hpc-config-apply

23.6. Replication account password

The steps to change these credentials are described here:

1. Decode the configuration ldif file:

clara enc edit <internal repository>/files/<cluster>/<filename>.enc

2. The field to change is olcSyncrepl:, it contains all the necessary informations to connect

to the master LDAP server (login, password, URI, etc ..)

3. Apply the new configuration on the proxy nodes.

4. Follow the LDAP bootstrap procedure as described in LDAP bootstrap on each proxy node.

It is recommended to wait until the first ldap replicate is complete before attempting to

update the second, to not disrupt authentication across the cluster.

NOTE
It is possible to change others values with this procedure, for example the root

LDAP password.

23.7. Monitoring certificates

The certificates used for monitoring are stored, encrypted, in the internal repository in <internal

repository>/files/<cluster>/icinga2/certs/. Each host has a certificate and a key. The steps to

follow to change them are:

1. Change the key and certificate files in the internal repository

2. Apply the configuration on the concerned node

3. Update the certificate on the Icinga2 server

23.8. Munge key

NOTE Scheduling service and jobs must be stopped to change the munge key.

WARNING This will kill running jobs.

© Scibian Projet — v1.9, 2019-04-05

23.6. Replication account password | 119

1. Stop the slurmd and slurmctld daemons.

2. Stop the munge daemon on all nodes.

3. Encrypt the new key with Clara and place it in <internal

repository>/files/<cluster>/munge/munge.key.enc

4. Apply the new configuration on all nodes.

5. restart the daemons.

23.9. Repo keyring

NOTE The packages must be saved in another place.

The cluster must use a private cluster keyring. This keyring is used to sign the local packages

repository.

It is stored in the internal repository: <internal repository>/files/<cluster>/repo/

Here are the steps to follow to change it:

1. Generates a new keyring:

LANG=C gpg --no-default-keyring \
--keyring <internal repository>/files/<cluster>/repo/cluster_keyring.gpg \
--secret-keyring <internal
repository>/files/<cluster>/repo/cluster_keyring.secret.gpg \
--gen-key

2. Encode the secret file with clara encode.

3. Apply the configuration on the admin node.

4. Delete the folder containing the local repository.

5. Re-create the repository with clara:

clara repo key
clara repo init scibian9-hpc

6. Add the previously saved packages with clara:

clara repo add scibian9-hpc mypackage_1-2.dsc
...

© Scibian Projet — v1.9, 2019-04-05

120 | 23.9. Repo keyring

23.10. MariaDB users

Generate passwords conform with your organization policy and edit the following parameters

with eyaml in the hiera repository:

• slurmdbd_slurm_db_password

• slurmdbd_slurmro_db_password

These parameters correspond to the passwords of the MariaDB having respectively R/W and

R/O grants on the SlurmDBD database.

Once modified, push and apply the configuration with the following commands:

hpc-config-push && \
 clush --fanout=1 -bg batch hpc-config-apply -v

The hpc-config-apply command will perform the following steps, on each batch node:

• Update the passwords in the configuration file of the Slurm mysql-setup utility.

• Update the passwords in the MariaDB database

• Update SlurmDBD configuration (if R/W password changed)

• Restart SlurmDBD (if R/W password changed)

The --fanout=1 parameter of the clush command makes sure the configuration is not

applied simultaneously on both batch nodes. This could cause the SlurmDBD daemon to be

restarted at the same time and make this service unavailable for a short period of time.

© Scibian Projet — v1.9, 2019-04-05

23.10. MariaDB users | 121

Chapter 24. Administration node re-installation

This procedure will wipe the first disk of the admin node, if some customizations are not in the

Puppet configuration, this should be handled separately.

Before, powering off the administration node, check that:

• There is an alternative route to connect to the service node (can be the service nodes

themselves)

• It is possible to connect to the BMC IPMI, and especially to the Serial Over LAN console

• It is possible to connect to the Ethernet administration network switch

The administration node has no critical service in the reference architecture, so it can simply be

powered off:

poweroff

NOTE
In some Ethernet bonding setups, the node cannot do a PXE boot with an

active bonding configuration on the Ethernet switch. If this is the case, refer to

the documentation of the network switch to disable the bonding configuration.

To be re-installed, the administration node must perform a network boot. This can be configured

with ipmitool(1) installed on a host that has access to the BMC network interface:

ipmitool -I lanplus -H <bmc host> -U <bmc username> -P chassis bootdev pxe
ipmitool -I lanplus -H <bmc host> -U <bmc username> -P chassis power on

Next steps will happen once the node is installed and has rebooted, the installation can be

followed through serial console:

ipmitool -I lanplus -H <bmc host> -U <bmc username> -P sol activate

NOTE
If the Ethernet switch configuration had to be modified to setup PXE boot, the

modification must be reverted to its nominal status.

© Scibian Projet — v1.9, 2019-04-05

122 | Chapter 24. Administration node re-installation

Chapter 25. Service node re-installation

Before re-installing a Service node, active Virtual Machines on the nodes should be migrated

away from the node. Clara can be used to list the active VMs and do the live migration.

Listing the VMs:

clara virt list | grep clserviceX

Migrate the live VMs with the command:

clara virt migrate <vmname> --dest-host clserviceY

These points should be checked before turning off a Service Node:

• The ceph cluster should be HEALTH_OK (ceph health), with at least three OSD in

• consult should return services as passing on at least three nodes

• On an Intel Omni-Path cluster, the opafabricinfo should return at least one Master and

one Standby node

Once there is no VM remaining on the node, it can be powered off safely, the other Service

node should ensure there is no service outage. The power off can be done from the node itself:

poweroff

NOTE
In some Ethernet bonding setups, the node cannot do a PXE boot with an

active bonding configuration on the Ethernet switch. If this is the case, refer to

the documentation of the network switch to disable the bonding configuration.

To be re-installed, the service node must perform a network boot. This can be configured with

clara:

clara ipmi pxe clserviceX
clara ipmi on clserviceX

Next steps will happen once the node is installed and as rebooted, the installation can be

followed through serial console:

clara ipmi connect clserviceX

After a Service node re-installation, the ceph services: OSD, MDS and RadosGW should be

reconfigured automatically by the Puppet HPC configuration. The Mon service (not present on

© Scibian Projet — v1.9, 2019-04-05

Chapter 25. Service node re-installation | 123

every node), must be boot-strapped again. This procedure is described with other Ceph

bootstrap procedures.

In order to validate the generic service node re-installation, there are some relevant checks to

perform.

• High-Speed network manager (Intel Omni-Path):

opafrabricinfo

The reinstalled node must appear as a Master or Standby node.

• Check the ceph cluster is healthy:

ceph status

The cluster should be HEALTH_OK with all OSDs, Mons and MDSs.

• Consul:

consult

All services on all nodes should have the state passing.

NOTE
If the Ethernet switch configuration had to be modified to setup PXE boot, the

modification must be reverted to its nominal status.

© Scibian Projet — v1.9, 2019-04-05

124 | Chapter 25. Service node re-installation

Chapter 26. Network Boot and Installation Tuning

Puppet-HPC deploys a network boot and installation system with sane default designed to work

in most situations. However, you may need to tune the default setup for specific needs. The

following sections how to alter the setting of all the network boot and installation components.

26.1. iPXE ROM

On Scibian HPC clusters, the default iPXE ROM is provided by the ipxe package. Alternatively,

you can build a custom ROM following the instructions available on iPXE website and deploy it

with Puppet-HPC.

First, copy the custom ROM (ex: custom.kpxe) in the $ADMIN/hpc-

privatedata/files/$CLUSTER/cluster/boot/ipxe/ directory.

Then, define the boottftp::hpc_files hash in the cluster layer of the Hiera repository to

declare the file to deploy:

boottftp::hpc_files:
 "%{hiera('tftp_dir')}/custom.kpxe":
 source: "%{::private_files_dir}/boot/ipxe/custom.kpxe"

Then, set the ipxebin parameter accordingly in the boot_params hash of the cluster layer of

the Hiera repository, for example:

boot_params:
 defaults:
 ipxebin: custom.kpxe

Finally, deploy configuration changes on DHCP and boot servers:

hpc-config-push && \
 clush -bg hpc_profiles:bootsystem::server,hpc_profiles:dhcp::server \
 hpc-config-apply

26.2. Bootmenu Entries

As explained in Section 5.2, “iPXE Bootmenu Generator”, the bootmenu entries available in

iPXE are declared in YAML files. Puppet-HPC provides a mechanism to deploy custom entries

and optionally override the defaults provided by scibian-hpc-netboot-bootmenu package.

For this purpose, edit the cluster layer of the Hiera repository to declare the

bootsystem::menu_entries hash profile parameter, for example:

© Scibian Projet — v1.9, 2019-04-05

26.1. iPXE ROM | 125

http://ipxe.org/

profiles::bootsystem::menu_entries:
 scibian9:
 ram:
 test:
 label: Run {{ os }} in RAM
 initrd: initrd
 kernel: vmlinuz
 opts: >
 initrd={{ initrd }}
 console={{ console }}
 ethdevice={{ boot_dev }}
 ethdevice-timeout={{ dhcp_timeout }}
 cowsize={{ cowsize }}
 transparent_hugepage=always
 disk-format={{ disk_format }}
 disk-raid={{ disk_raid }}
 boot=live
 union=overlay
 fetch=${base-url}/{{ os }}.squashfs.torrent
 {{ kernel_opts }}

This declares an additional scibian9-ram-test entry. Optionally, it is also possible to set this

entry as the default for some nodes in the boot_params hash of the cluster layer of the Hiera

repository, for example:

boot_params:
 fbcn04:
 os: scibian9
 media: ram
 version: test

This way, the fbcn04 node will boot this new entry by default.

Finally, deploy the configuration changes on boot servers:

hpc-config-push && \
 clush -bg hpc_profiles:bootsystem::server \
 hpc-config-apply

26.3. Debian Installer Environment

As explained in Section 5.1.2, “Disk installation”, the Debian installer environment is installed

with debian-install-*-netboot-amd64 packages. These packages are designed to work

on most hardware, however it may be required to use alternate environment in some cases,

notably if the hardware needs special non-free modules or firmwares during the installation.

For this purpose, Puppet-HPC lets the ability to deploy custom Debian Installer environment

within an archive.

For information, it is possible to build a base archive using the packages, for example:

© Scibian Projet — v1.9, 2019-04-05

126 | 26.3. Debian Installer Environment

install netboot package
apt-get install debian-installer-9-netboot-amd64

create the base netboot archive
tar chzf $ADMIN/hpc-privatedata/files/$CLUSTER/cluster/boot/disk-
installer/scibian9/netboot.tar.gz \
 -C /usr/lib/debian-installer/images/9/amd64/text .

Starting from this point, the archive can be tuned upon your needs.

To deploy this archive on the boot servers, the boothttp::archives hash parameter must be

defined accordingly in the cluster specific layer of the Hiera repository:

boothttp::archives:
 "%{hiera('website_dir')}/disk/scibian9/custom/netboot.tar.gz":
 source: "%{::private_files_dir}/boot/disk-
installer/scibian9/netboot.tar.gz"
 extract_path: "%{hiera('website_dir')}/disk/scibian9/custom"
 extract: true

Then, define a bootmenu entry, following the procedure in Section 26.2, “Bootmenu Entries”, to

network boot this custom environment.

Finally, deploy the new configuration on the boot servers:

hpc-config-push && \
 clush -bg hpc_profiles:bootsystem::server \
 hpc-config-apply

26.4. Alternate Partition Schemas

As explained in Section 5.3, “Debian Installer Preseed Generator”, the preseed generator

provides a link to a CGI script that generates dynamically for the node a partition schema (aka.

recipe) for Debian installer partman utility.

By default, this script sends a partition schema common to all nodes. The default common

partition schema is provided by scibian-hpc-netboot-preseedator package. It

configures the /dev/sda disk with LVM physical volume and creates dedicated logical volumes

for /, /var, /tmp and swap partitions. However, the script is able to send specific partitions

schemas for a given host or role.

Puppet-HPC gives the ability to override the default common partition schema provided by the

package and to deploy these specific partition schemas and

Once the alternate partman partition recipe is defined, copy the file into $ADMIN/hpc-

privatedata/files/$CLUSTER/cluster/boot/disk-installer/schemas/ directory.

© Scibian Projet — v1.9, 2019-04-05

26.4. Alternate Partition Schemas | 127

NOTE
The debian-installer package provides documentation to help writing

partman recipes, in files /usr/share/doc/debian-

installer/devel/partman-auto*-recipe.txt*.

Then, define the boothttp::partition_schemas hash parameter in cluster layer of the

Hiera repository to declare the partition schemas to deploy, for example:

boothttp::partition_schemas:
 common:
 src: "%{::private_files_dir}/boot/disk-installer/schemas/common"
 dest: 'common'
 proxy:
 src: "%{::private_files_dir}/boot/disk-installer/schemas/roles/proxy"
 dest: 'roles/proxy'
 fbbatch2:
 src: "%{::private_files_dir}/boot/disk-installer/schemas/nodes/fbbatch2"
 dest: 'nodes/fbbatch2'

In this example, the following partition schemas are deployed:

• An override of the common partition schema,

• A partition schema for all nodes having the proxy role,

• A partition schema specific to fbbatch2 node.

Finally, deploy the new configuration on the boot servers:

hpc-config-push && \
 clush -bg hpc_profiles:bootsystem::server \
 hpc-config-apply

© Scibian Projet — v1.9, 2019-04-05

128 | 26.4. Alternate Partition Schemas

Chapter 27. Frontend access

27.1. Draining

To perform a scheduled reboot of a frontend it is better to avoid new connection going to the

frontend node that will be rebooted. The new connections are highly available and load

balanced with IPVS.

It is possible to remove a frontend from the pool of node accepting new connections without

killing active connections with the ipvsadm command by setting the weight of a node to 0.

To list the current weight, on a frontend:

ipvsadm -ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 172.16.1.16:22 rr persistent 600
 -> 172.16.1.11:22 Route 1 10 0
 -> 172.16.1.12:22 Route 1 6 0
 -> 172.16.1.13:22 Route 1 1 0
 -> 172.16.1.14:22 Route 1 15 0
 -> 172.16.1.15:22 Route 1 1 0

To avoid a frontend node being attributed to new sessions, the weight of the node can be

manually set to 0. This setting does not completely forbid new connection to go to the node, if a

user already has a session, new session will go to the same node regardless of the weight. This

setting also does not block connections made directly to the node and not the virtual IP address.

ipvsadm -e -t 172.16.1.16:22 -r 172.16.1.11:22 -w 0
ipvsadm -ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 172.16.1.16:22 rr persistent 600
 -> 172.16.1.11:22 Route 0 10 0
 -> 172.16.1.12:22 Route 1 6 0
 -> 172.16.1.13:22 Route 1 1 0
 -> 172.16.1.14:22 Route 1 15 0
 -> 172.16.1.15:22 Route 1 1 0

The modification can be reversed by setting the weight back to 1 manually.

ipvsadm -e -t 172.16.1.16:22 -r 172.16.1.12:22 -w 1

© Scibian Projet — v1.9, 2019-04-05

27.1. Draining | 129

Chapter 28. NFS HA

28.1. Starting a node

When a node start is should not start the keepalived service automatically. This permits a failed

node to be started without it becoming master with an remaining problem.

Before starting the keepalived service, the following conditions must be met:

• The multipath-tools service must be active with a running multipathd process.

• The keepalived service must be disabled

When these conditions are met, the service can be started:

systemctl start keepalived

If the node is to become master (master node in the VIP configuration or other node is down),

check that the first check goes well. It runs every minutes and logs are in

/var/log/user.log. The message following message must appear:

Mar 17 17:19:01 fbnfs1 hpc_nfs_ha_server_check.sh.info: INFO: fbnfs1 All checks are
OK

28.2. Manual Fail Over

If the master node disappears, because it is turned off or because the keepalived service is

stopped, the failover will happen, but it will take a bit of time (a little more than a minute). This

timeout can be entirely avoided by doing a manual failover of the master node before cutting the

keepalived service.

To do this, the keepalived configuration must be changed manually on the node. Edit the file

/etc/keepalived/keepalived.conf. Find the configuration for the NFS VIP and change

the priority to 40, and the role to BACKUP. The service must be reloaded:

service keepalived reload

The failover should happen quickly. Once the node failed over, stop the keepalived service:

systemctl stop keepalived

The original configuration must be restored before starting the service again. This will happen if

you launch a hpc-config-apply manually or if you reboot the node.

© Scibian Projet — v1.9, 2019-04-05

130 | 28.1. Starting a node

Chapter 29. Services

This section contains usefull procedures for casual operations on infrastructure services.

29.1. Packages Caching purge

In order to invalidate and purge the packages caching service apt-cacher-ng cache content,

run the following commands consecutively:

clush -bg service systemctl stop apt-cacher-ng.service
clush -bg service rm -rf /var/cache/apt-cacher-ng
clush -bg service mkdir /var/cache/apt-cacher-ng
clush -bg service chown apt-cacher-ng: /var/cache/apt-cacher-ng
clush -bg service systemctl start apt-cacher-ng.service

© Scibian Projet — v1.9, 2019-04-05

29.1. Packages Caching purge | 131

Chapter 30. Virtual Machines

This section contains procedure related with virtual machines management with clara.

30.1. Deleting a Virtual Machine

A Virtual Machine is composed of two mostly independant objects:

• The disk image

• The definition on a host

The two objects must be deleted separately.

The first step is to stop the Virtual Machine:

clara virt stop <vm_name>

Once it is in the state SHUTOFF you can undefine it:

clara virt undefine <vm_name>

The VM will still appear on clara virt list with the state: MISSING. It means clara still

sees the disk image but not the Virtual Machine definition.

You can then proceed with deleting the disk image, by checking the full disk image name with

clara virt list --details, you must find the volume name and the pool name.

On a physical host:

virsh vol-delete --pool <pool_name> <volume_name>

On all other physical hosts:

virsh pool-refresh <pool_name>

© Scibian Projet — v1.9, 2019-04-05

132 | 30.1. Deleting a Virtual Machine

	Scibian 9 HPC Installation guide
	Table of Contents
	About this document
	Purpose
	Structure
	Typographic conventions
	Build dependencies
	License
	Authors

	Reference architecture
	Chapter 1. Hardware architecture
	1.1. Networks
	1.2. Infrastructure cluster
	1.3. User-space cluster
	1.4. Storage system

	Chapter 2. External services
	2.1. Base services
	2.2. Optional services

	Chapter 3. Software architecture
	3.1. Overview
	3.2. Base Services
	3.3. Additional Services
	3.4. High-Availability

	Chapter 4. Conventions
	Chapter 5. Advanced Topics
	5.1. Boot sequence
	5.2. iPXE Bootmenu Generator
	5.3. Debian Installer Preseed Generator
	5.4. Frontend nodes: SSH load-balancing and high-availability
	5.5. Service nodes: DNS load-balancing and high-availability
	5.6. Consul and DNS integration
	5.7. Scibian diskless initrd

	Installation procedure
	Chapter 6. Overview
	Chapter 7. Requirements
	Chapter 8. Temporary installation node
	8.1. Base installation
	8.2. Administration environment

	Chapter 9. Internal configuration repository
	9.1. Base directories
	9.2. Organization settings
	9.3. Cluster directories
	9.4. Puppet configuration
	9.5. Cluster definition
	9.6. Service role
	9.7. Authentication and encryption keys

	Chapter 10. Generic service nodes
	10.1. Temporary installation services
	10.2. First Run
	10.3. Second Run
	10.4. Base system installation
	10.5. Ceph deployment
	10.6. Consul deployment
	10.7. Temporary installation node sweep

	Chapter 11. Admin node
	11.1. Base system
	11.2. Administration environmnent

	Chapter 12. Service virtual machines
	12.1. Libvirt settings
	12.2. Clara configuration
	12.3. Virtual machine definitions
	12.4. Required virtual machines

	Chapter 13. LDAP Authentication
	13.1. Directory replica
	13.2. Clients setup

	Chapter 14. Slurm
	14.1. Base Configuration
	14.2. Shared State Location
	14.3. Miscellaneous Tuning
	14.4. MariaDB security hardening
	14.5. Bootstrap
	14.6. Configuration deployment

	Chapter 15. Frontend and compute nodes
	15.1. Diskless image generation
	15.2. Boot nodes

	Chapter 16. Optional features
	16.1. Tuning
	16.2. Firewall
	16.3. Kerberos
	16.4. Internal APT repository
	16.5. Storage Multipath
	16.6. Monitoring
	16.7. Metrics
	16.8. HPCStats
	16.9. Slurm WCKeys
	16.10. Slurm-web REST API
	16.11. NFS High-Availability
	16.12. Slurm power management

	Bootstrap procedures
	Chapter 17. LDAP bootstrap
	Chapter 18. MariaDB/Galera bootstrap
	Chapter 19. SlurmDBD bootstrap
	Chapter 20. Ceph
	20.1. Ceph Deploy
	20.2. Mon
	20.3. OSD
	20.4. CephFS

	Chapter 21. NFS HA bootstrap

	Production procedures
	Chapter 22. MAC address change
	Chapter 23. Password/keys changes
	23.1. Root password
	23.2. Root SSH key
	23.3. SSH host keys
	23.4. Eyaml keys
	23.5. Internal repository encoding key
	23.6. Replication account password
	23.7. Monitoring certificates
	23.8. Munge key
	23.9. Repo keyring
	23.10. MariaDB users

	Chapter 24. Administration node re-installation
	Chapter 25. Service node re-installation
	Chapter 26. Network Boot and Installation Tuning
	26.1. iPXE ROM
	26.2. Bootmenu Entries
	26.3. Debian Installer Environment
	26.4. Alternate Partition Schemas

	Chapter 27. Frontend access
	27.1. Draining

	Chapter 28. NFS HA
	28.1. Starting a node
	28.2. Manual Fail Over

	Chapter 29. Services
	29.1. Packages Caching purge

	Chapter 30. Virtual Machines
	30.1. Deleting a Virtual Machine

