SCibion

Scibian 9 HPC Installation guide

CCN-HPC
Version 1.9, 2018-08-20

Table of Contents

AboUL this dOCUMENto 1
PUIPOSE . . 2
SHTUCTIUNE . . . 3
Typographic CONVENLIONS 4
Build dependencCies e 5
LGNS . o o 6
AUTNOTS . 7

Reference architecture. 8
1. Hardware architecture e e 9

L L NEtWOTKS .o 9
1.2. Infrastructure ClUSEer. 10
1.3. USEr-space CIUStero ot e e e 12
1.4, StOrage SYSteM . . . 12
2. EXternal SErVICES . ..o 13
2.0, BASE SEIVICES . .« v v vt ettt 13
2.2, 0ptioNal SEIVICESttt 14
3. Software architeCture 15
B L OVEBIVIEW . e 15
3.2, BaSE SEIVICES . . ittt 16
3.3, Additional SErVICES. o 19
3.4. High-Availability 20
A, CONVENTIONS . . oo e 23
5. ADVaNCed TOPICS . . .ottt et e 24
.. BOOL SEBOUEBNCE . . o oottt 24
5.2, IPXE BOOtMENU GENEIAtOr. . . . ottt et e e e e e e 28
5.3. Debian Installer Preseed Generator. 30
5.4. Frontend nodes: SSH load-balancing and high-availability 31
5.5. Service nodes: DNS load-balancing and high-availability 34
5.6. Consul and DNS integration. 35
5.7. Scibian diskless initrd. 37

Installation ProcedUre. e 39
B. OVEIVIBW . .« . ottt e e 40
7 REQUITEMENTS . . . o 41
8. Temporary installation Node 44

8.1.Base installation 44
8.2. Administration environmMent 44
9. Internal configuration repoSItOry it 46
9.1. BaSe dir€CIONES vttt 46
9.2. Organization SettiNgSot 46

9.3. Cluster dir€CtOrIES ottt e e e e 48

10.

11.

12.

13.

14.

15.

16.

9.4. Puppet configuration 48

9.5. Cluster definition. 49
0.6. SeIVICE I0le . . . 55
9.7. Authentication and encryption keys 56
GENENIC SEIVICE NOUES\ttt et e e e e 62
10.1. Temporary installation Services 62
10.2. FIrSt RUN. . . 62
10.3. Second RUNo 64
10.4. Base system installation. 64
10.5. Cephdeployment 66
10.6. Consul deployment.t 73
10.7. Temporary installation node sweep 75
AdMIN NOUE. . . .o e 76
111 BaSe SYS M. . oottt 76
11.2. Administration environmnent 78
Service virtual machines. 79
12,1, LibVirt Settingso oo e 79
12.2. Clara configuration 80
12.3. Virtual machine definitions 83
12.4. Required virtual machines 85
LDAP AuthentiCation. 87
13.1. Directory replica oo 87
13,2, ClieNtS SEtUP. .« v ottt e 88
SIUIM L 90
14.1. Base Configuration. ot 90
14.2. Shared State LOCation 91
14.3. Miscellaneous TUNING vttt e e e e e 92
14.4. MariaDB security hardening. 92
14,5, BOO S AP &« v v v ettt 93
14.6. Configuration deployment 94
Frontend and compute NOdesS. 95
15.1. Diskless image generation 95
15.2. BOOt NOOES . . . oot 100
Optional features 102
161, TUNING vttt e e e e 102
16.2. Firewall 102
16.3. Kerberos. 102
16.4. Internal APT repoSItOry. . . o oottt 102
16.5. Storage Multipath 102
16.6. MONITOIING. .« . o v ottt 102
16.7. MEtICS . o ot 102
16.8. HPC S alSot 102

16.9. SIUrM WCKYS . . . o 102

16.10. Slurm-web REST APo 103

16.11. NFS High-Availability 103
16.12. Slurm power managemento e 103
BOOtStrap ProCedUIES. o i e e 105
17. LDAP BOOtStrap . ..ot e 106
18. MariaDB/Galera bootstrapo 108
19. SIUrmDBD DOOESIrap. . . . o et 109
20. CEPN . oo 110
20.1. Ceph Deploy. . . .o oo 110
20.2. MON 110
20.3. OSD . 110
20.4. CephFS .o 111
21 . NFS HA DOOESIIap. . . . oo oot e e 112
Production proCedUIeS ot 113
22. MAC address Change 114
23. Password/Keys Changesot e 115
23.1. ROOt PASSWOIA . . . oottt e 115
23.2. ROOt SSH KeY . . . oo 115
23.3. SSH hOSt KeYS . . o 115
23.4. Eyaml KeYso 116
23.5. Internal repository encoding key 117
23.6. Replication account password 119
23.7. Monitoring certificates 119
23.8. MUNGE KBY . . . 119
23.9. REPO KEYING . . oo 120
23.10. MariaDB USEIS . . . o ottt 121
24. Administration node re-installation 122
25. Service node re-installation 123
26. Network Boot and Installation Tuning i e 125
26.0. IPXE ROM e 125
26.2. BOOtMENU ENtries. oo 125
26.3. Debian Installer Environment 126
26.4. Alternate Partition Schemas. 127
27 FroNtenNd @CCESS . . o ottt 129
27 L. DraiNINg oo 129
28. NFS HA. . 130
28.1. Starting a node. 130
28.2. Manual Fail Over 130
2. SBIVICES . oo i 131
29.1. Packages Caching purget 131
30. Virtual Machines 132

30.1. Deleting a Virtual Machine 132

‘‘‘‘‘ - © Scibian Projet — v1.9, 2019-04-05

About this document

Preface | 1

© Scibian Projet — v1.9, 2019-04-05 -

Purpose

The present document presents the reference architecture, the bootstrap and installation
procedures of an HPC system called Scibian HPC.

The main goal is to provide exhaustive information regarding the configuration and system
settings based on the needs expressed by users. This information may be useful to business
and technical stakeholders, as well as to all members of the scientific computing community at
EDF

2 | Purpose

===== - © Scibian Projet — v1.9, 2019-04-05

Structure

This document is divided into five chapters:

1. About this document: refers to the present chapter.

2. Reference architecture: gives an overview of the software and hardware architecture of a
Scibian HPC system. It also includes a detailed description of the boot sequence of the HPC
System and some other advanced topics.

3. Installation procedures: describes how to install the Puppet-HPC software stack used to
configure the administration and generic nodes of the HPC system. This chapter also
explains how to use Ceph for sharing the configuration files across all the nodes and how to
handle the virtual machines providing all the services needed to operate the HPC system.

4. Bootstrap procedures: contains all the procedures to boostrap all the crucial services for the
Scibian HPC system: LDAP, Ceph, MariaDB with Galera, SlurmDBD, etc.

5. Production procedures: contains all the technical procedures to follow for regular operations
occuring during the production phase of the supercomputer. This notably includes changing
any encryption or authentication key, changing passwords, reinstalling nodes, etc.

Structure | 3

© Scibian Projet — v1.9, 2019-04-05 -

Typographic conventions

The following typographic conventions are used in this document:

« Files or directories names are written in italics: /admin/restricted/config-puppet.
* Hostnames are written in bold: genbatch1.

e Groups of hostnames are written using the nodeset syntax from clustershell. For example,
genbatch[1-2] refers to the servers genbatchl and genbatch?2.

» Commands, configuration files contents or source code files are set off visually from the
surrounding text as shown below:

$ cp /etc/default/rcS /tnp

4 | Typographic conventions

https://github.com/cea-hpc/clustershell/wiki/nodeset

===== - © Scibian Projet — v1.9, 2019-04-05

Build dependencies

On a Scibian 9 system, these packages must be installed to build this documentation:

e asciidoctor >=0.1.4

« asciidoctor-scibian-tpl-latex
« inkscape

* rubber

« texlive-latex-extra

Build dependencies | 5

© Scibian Projet — v1.9, 2019-04-05 -

License

Copyright © 2014-2018 EDF S.A.

CCN-HPC <dsp-cspito-ccn-hpc@edf.fr>

Thi s docunent is governed by the CeClLL |icense under French |aw and
abiding by the rules of distribution of free software. You can use
nmodi fy and/ or redistribute the docunent under the ternms of the
CeClLL license as circulated by CEA, CNRS and INRIA at the follow ng
URL "http://ww. cecill.info".

As a counterpart to the access to the source code and rights to copy,
nodi fy and redistribute granted by the |icense, users are provided only
with alimted warranty and the docunment's author, the holder of the
econom ¢ rights, and the successive |licensors have only limted
liability.

In this respect, the user's attention is drawn to the risks associ ated
with | oading, wusing, nodifying and/or devel oping or reproducing the
docunent by the user in light of its specific status of free software
that may mean that it is conplicated to nanipulate, and that also
therefore nmeans that it is reserved for developers and experienced
prof essi onal s having in-depth conmputer know edge. Users are therefore
encouraged to | oad and test the docunent's suitability as regards their
requi renents in conditions enabling the security of their systens and/or
data to be ensured and, nore generally, to use and operate it in the
same conditions as regards security.

The fact that you are presently reading this nmeans that you have had
know edge of the CeClLL license and that you accept its termns.

Full license terms and conditions can be found at
http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.html.

6 | License

mailto:dsp-cspito-ccn-hpc@edf.fr
http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.html

===== - © Scibian Projet — v1.9, 2019-04-05

Authors

In alphabetical order:

 Benoit Boccard
* Ana Guerrero Lopez

e Thomas Hamel

Camille Mange

* Rémi Palancher

Cécile Yoshikawa

Authors | 7

© Scibian Projet — v1.9, 2019-04-05

Reference architecture

This chapter gives an overview of the software and hardware architecture of a Scibian HPC
system. It also includes a detailed description of the boot sequence of the HPC System and

some other advanced topics.

8 | Authors

o © Scibian Projet — v1.9, 2019-04-05

Chapter 1. Hardware architecture

The following diagram represents at a high-level a simple typical hardware architecture
supported on Scibian HPC clusters:

Scibian HPC cluster

infrastructure cluster

generic service nodes

storage system

Organisation
WAN

userspace cluster

frontend nodes compute nodes

e

Figure 1. Scibian HPC cluster hardware typical architecture

1.1. Networks

The minimal network configuration supported on Scibian HPC clusters consists of two physically
separated networks:

 The WAN network, an Ethernet based network with L3 network routers which connect the
IP networks of the HPC cluster to the organization network.

* The backoffice network used for basically every other internal network communications:
deployment, services, administrator operations, etc. It must be an Ethernet network with
dedicated (level 2 or more) switches.

For performance reasons with distributed computing, HPC clusters generally have a third low-
latency network. It is used for both 1/0 to the main storage system and distributed computing
communications (typically MPI messages) between compute nodes. The hardware technologies
of this network may vary upon performance requirements but it generally involves high

1.1. Networks | 9

© Scibian Projet — v1.9, 2019-04-05 -

bandwidth (10+GB/s) and low latency technologies such as InfiniBand, Omni-Path or 10GB
Ethernet. In the absence of dedicated low-latency network, the backoffice network is also used
for central storage system 1/O and distributed computing communications.

It is recommended to split the backoffice network with four VLAN dedicated to the following
groups of network interfaces:

» The system interfaces of the infrastructure cluster nodes,

« The system interfaces of the userspace cluster nodes,

e The management interfaces of the infrastructure cluster nodes (BMC [1. Baseboard
Management Card]) and hardware equipments (switches, storage controllers, CMC [2:
Chassis Management Card], etc),

* The management interfaces of the userspace cluster nodes.

In this setup, it is recommended to route IP subnetworks between the VLAN with L3 switche(s)
on the backoffice network.

This setup has significant advantages both in terms of reliability and security:

* It significantly reduces the size of Ethernet broadcast domains which notably increases
DHCP reliability and drops Ethernet switches load.

It makes easier to restrict access to the infrastructure cluster and hardware equipments,
notably in case of evil user attack.

* It gives the possibilty to fully adopt the areas feature of Puppet-HPC.

For more details about the areas feature, please refer to Puppet-HPC
NOTE Reference Documentation (chapter Software Architecture, section Cluster
Definition).

1.2. Infrastructure cluster

The infrastructure cluster is composed by two types of nodes: the admin node and the generic
service nodes.

The admin node is the access node for administrators and the central point of administrative
operations. All common administrative actions are performed on this node. It does not run any
intensive workloads, just simple short-lived programs and it does not need to be very powerful. It
does not store sensible data nor run critical services, so it does not need to be very reliable
either. Example of hardware specifications:

CPU 1 x 4 cores

RAM 8GB ECC

10 | 1.2. Infrastructure cluster

===== - © Scibian Projet — v1.9, 2019-04-05

Network « 1 x 1GB bonding on backoffice network
e 1 x 1GB bonding on WAN network
¢ 1 link on low-latency network

Storage 2 x 300GB RAID1 SATA hard disk

PSU Non-redundant

The generic service nodes run all critical infrastructure services (within service virtual
machines) and manage all production administrative data. Scibian HPC requires a pool from 3
(minimum) to 5 (recommended) generic service nodes. The pool works in active cluster mode,
the load is balanced with automatic fail-over. All generic service nodes of a cluster must be fairly
identical for efficient load-balancing.

The generic service nodes manage the production data into a distributed object-storage system.
It is highly recommended that the nodes have a dedicated block storage device for this purpose.
The workload is mostly proportional to the number of compute nodes but the generic service
nodes must be quite powerful to comfortably handle load peaks happening during some
operations (ex: full cluster reboot). Also, since services are run into virtual machines, a fairly
large amount of RAM is required. Services can generate a lot of traffic on the backoffice
network, it is relevant to provide a network adapter with high bandwidth. Even though high-
availability is ensured at the software level with automatic fail-over between generic service
nodes, it is nevertheless recommended to get hardware redundancy on most devices of the
generic service nodes to avoid always risky and hazardous service migrations as much as
possible. Example of hardware specifications:

CPU 2 x 16 cores
RAM 64GB ECC
Network « 2 x 10GB bonding on backoffice network
e 2 x 1GB bonding on WAN network
1 link on low-latency network
Storage + 2 x 300GB RAID1 SATA hard disk for host
* 2x 1TB SSD SAS or NVMe PCle for object-storage system
PSU Redundant

All physical nodes must be connected to all three physical networks. There are virtual bridges
on the host of the generic service nodes connected to the WAN and backoffice networks. The
service virtual machines have connections to the virtual bridges upon their hosted service

1.2. Infrastructure cluster | 11

© Scibian Projet — v1.9, 2019-04-05 -

requirements.

1.3. User-space cluster

The user-space cluster is composed of frontend nodes and compute nodes.

The nodes of the user-space cluster are deployed with a diskless live system stored in RAM. It
implies that, technically speaking, the nodes do not necessarily need to have local block storage
devices.

The frontend nodes are the access hosts for users so they must be connected to all three
physical networks. It is possible to have multiple frontend nodes in active cluster mode for load-
balancing and automatic fail-over. The exact hardware specifications of the frontend nodes
mostly depend on user needs and expectations. Users may need to transfer large amount of
data to the cluster, it is therefore recommended to provide high-bandwidth network adapters for
the WAN network. These nodes can also be designed to compile computational codes and in
this case, they must be powerful in terms of CPU, RAM and local storage 1/O.

The compute nodes run the jobs so they must provide high performances. Their exact
hardware specifications totally depend on user needs. They must be connected to both the
backoffice and the low-latency networks.

1.4. Storage system

The storage system is designed to host user data. It provides one or several shared POSIX
filesystems. The evolved storage technologies depend on user needs ranging from a simple
NFS NAS to a complex distributed filesystem such as Lustre or GPFS with many SAN and 1/O
servers.

12| 1.3. User-space cluster

===== - © Scibian Projet — v1.9, 2019-04-05

Chapter 2. External services

A Scibian HPC cluster is designed to be mainly self contained and to continue running jobs
even if it is cut off from the rest of the organization network. There is some limits to this though
and some external services are needed. Critical external services are replicated inside the
cluster though, to avoid losing availability of the cluster if the connection to external service is
cut.

2.1. Base services

2.1.1. LDAP

The reference cluster architecture provides a highly available LDAP service, but it is only meant
as a replica of an external LDAP service. The organization must provide an LDAP service with
suitable replica credentials.

Only the LDAP servers (Proxy virtual machines) connect to these servers.

2.1.2. NTP

The generic service nodes are providing NTP servers for the whole cluster. Those servers must
be synchronized on an external NTP source. This could be an organization NTP or a public one
(eg. spool . nt p. org).

Only the NTP servers (Generic Service nodes) connect to these servers.

2.1.3. Package repositories

The normal way for a Scibian HPC Cluster to handle package repositories (APT) is to provide a
proxy cache to organization or public distribution repositories. Alternatively, it is possible to
mirror external repositories on the cluster (with cl ar a and Ceph/S3).

Proxy cache needs less maintenance and is the preferred solution. Local mirrors can be used
when reliable connection to external repositories is unreliable.

Only the Proxy Cache servers (Generic Service nodes) connect to these servers. In the mirror
mode, only the admin node uses them.

2.1.4. DNS

External DNS service is not strictly necessary but is hard to not configure if the cluster must use
organization or public services (License servers, NAS...).

The external DNS servers are configured as recursive in the local DNS server configuration.

2.1. Base services | 13

© Scibian Projet — v1.9, 2019-04-05 -

Only the DNS servers (Generic Service nodes) connect to these servers.
2.2. Optional services

2.2.1. NAS

It is frequent to mount (at least on the frontend nodes) an external NAS space to copy data in
and out of the cluster.

2.2.2. Graphite

In the reference architecture all system metrics collected on the cluster (by collectd) are pushed
to an external graphite server. This is usually relayed by the proxy virtual machines.

2.2.3. InfluxDB

In the reference architecture all jobs metrics collected on the cluster are pushed to an external
InfluxDB server. This is usually relayed by the proxy virtual machines.

2.2.4. HPCStats

HPCStats is a tool that frequently connects to the frontend as a normal user to launch job. It
also connects to the SlurmDBD database to get batch job statistics. The database connection
needs a special NAT configuration on the Proxy virtual machines.

2.2.5. Slurm-Web Dashboard

The Slurm-Web Dashboard aggregates data coming from multiple clusters in the same web
interface. To get those data, the client connect to an HTTP REST API that is hosted on the
Proxy virtual machines.

14 | 2.2. Optional services

===== - © Scibian Projet — v1.9, 2019-04-05

Chapter 3. Software architecture

3.1. Overview

Functions
>
. A . A YAV BN
Services { H
B A NN :
é
Exte rn al LExternaI DNs—l LExtemaI NTP—l Iﬂtralized Logsl | External APT Reposl LExtemaI LDAFl | Centralized Metrics
Services

3.1.1. Functions

The software configuration of the cluster aims to deliver a set of functions. Functions can rely on
each other, for example, the disk installer uses the configuration management to finish the post-
install process.

The main functions provided by a Scibian HPC cluster are:

e Configuration Management, to distribute and apply the configuration to the nodes

Disk Installer, to install an OS from scratch on the node disks through the network
» Diskless Boot, to boot a node with a live diskless OS through the network

e Administrator Tools, tools and services used by the system administrator to operate the
cluster

» User Tools, tools and services used by end users

The Scibian HPC Cluster will use a set of services to deliver a particular function. If a cluster
can provide Configuration Management and a Disk Installer, it is able to operate even if it
cannot do something useful for the users. These two core functions permit to create a self
sufficient cluster that will be used to provide other functions.

3.1.2. Services

The software services of the cluster are sorted into two broad categories:

* Base Services, necessary to provide core functions: install and configure a physical or
virtual machine

< Additional Services, to boot a diskless (live) machine, provide all end user services (batch,

3.1. Overview | 15

© Scibian Projet — v1.9, 2019-04-05 -

user directory, licenses...), and system services not mandatory to install a machine
(monitoring, metrics...)

The Base Services run on a set of physical machines that are almost identical, those hosts are
called Service Nodes. The services are setup to work reliably even if some of the service
nodes are down. This means that a service node can be re-installed by other active service
nodes.

The Additional Services can be installed on a set of other hosts that can be either physical or
virtual. VMs (Virtual Machines) are usually used because those services do not need a lot of
raw power and the agility provided by virtual machines (like live host migration) are often an
advantage.

If the cluster is using virtualized machines for the Additional Services, the service nodes must
also provide a consistent virtualization platform (storage and hosts). In the reference
architecture, this is provided with Ceph RBD and Libvirtd running on service nodes.

A particular service runs on service nodes even if it is not mandatory for Disk Installer or Config
Management: the low-latency network manager (Subnet Manager for InfiniBand, Fabric
Manager for Intel Omni-Path). This exception is due to the fact that this particular service needs
raw access to the low-latency network.

In the Puppet configuration, services are usually associated with profiles. For example, the
puppet configuration configures the DNS Server service with the profile:
profiles::dns::server.

3.2. Base Services

3.2.1. Infrastructure

Infrastructure-related services provide basic network operations:

e DHCP and TFTP for PXE Boot
* DNS servers, with forwarding for external zones

* NTP servers, synchronized on external servers

These services are configured the same way and running on each service nodes.

3.2.2. Consul

Consul is a service that permits to discover available services in the cluster. Client will query a
special DNS entry (xxx. servi ce. vi rtual) and the DNS server integrated with Consul will
return the IP address of an available instance.

16 | 3.2. Base Services

o © Scibian Projet — v1.9, 2019-04-05

3.2.3. Ceph

Ceph provides an highly available storage system for all system needs. Ceph has the advantage
to work with internal storage on service nodes. It does not require a storage system shared
between servers (NAS or SAN).

Ceph provides:

» A Rados Block Device (RBD) that is used to store Virtual Machines disk images

« A Rados GateWay to provide storage for configuration management, Amazon S3 compatible
REST API for write operations and plain HTTP for read.

* A Ceph FS that can provide a POSIX filesystem used for Slurm Controller state save
location

A Ceph cluster is made of four kinds of daemons. All generic service nodes run the following
daemons:

* OSD, Object Storage Daemons actually holding the content of the ceph cluster

« RGW, Rados GateWay (sometimes shortened radosgw) exposing an HTTP API like S3 to
store and retrieve data in Ceph

Two other kind of service are only available on three of the generic service nodes:

3.2. Base Services | 17

© Scibian Projet — v1.9, 2019-04-05 -

* MON, Monitoring nodes, this is the orchestrator of the ceph cluster. A quorum of two active
mon nodes must be maintained for the cluster to be available

« MDS, MetaData Server, only used by CephFS (the POSIX implementation above ceph). At
least one must always be active.

With this configuration, any server can be unavailable. As long as at least two servers holding
critical services are available, the cluster might survive losing another non-critical server.

3.2.4. Libvirt/KVM

Service nodes are also the physical hosts for the Virtual Machines of the cluster. Libvirt is used
in combination with QEMU/KVM to configure the VMs. A Ceph RBD pool is used to store the
image of the VMs. With this configuration, the only state on a service node is the VM definition.

generic service nodes
admin node
libwirt
clara

Figure 2. How the service machines, ceph and vm interact

Integration with Clara makes it easy to move VMs between nodes.

3.2.5. HTTP secret and boot

The process to boot a node needs a configuration obtained through HTTP and computed by a
CGl (in Python). This is hosted on the service nodes and served by Apache. This is also used to
serve files like the kernel, initrd and pre-seeded configuration.

A special Virtual Host on the Apache configuration is used to serve secrets (Hiera-Eyaml keys).
This VHost is configured to only serve the files on a specific port. This port is only accessible if
the client connects from a port below 1024 (is root), this is enforced by a Shorewall rule.

18| 3.2. Base Services

===== - © Scibian Projet — v1.9, 2019-04-05

3.2.6. APT proxy

There is no full repository mirror on the cluster. APT is configured to use a proxy that will fetch
data from external repositories and cache it. This permits to have always up-to-date packages
without overloading external repositories and without having to maintain mirror sync (internally
and externally).

3.2.7. Logs

Logs from all nodes are forwarded to a Virtual IP address running on the service nodes. The
local rsyslog daemon will centralize those logs and optionally forward the result to an external
location.

3.2.8. Low-latency network manager

The Low-latency network manager (InfiniBand Subnet Manager or Intel Omni-Path Fabric
Manager) is not mandatory to achieve the feature set of Base Services (Configuration
Management and Disk Installation) but it must run on a physical machine, so it is grouped with
the Base Services to run on the service nodes.

3.2.9. NFS HA Service

A NFS HA Service can serve two purpose:

» Shared state for servicing using Posix to share their state (like SlurmCtld) when CephFS
does not provided sufficient performance

« Shared storage for the users if a distributed file system like GPFS or Lustre is not used (only
works for smaller cluster sizes)

The NFS HA Service is provided with a Keepalived setup.

3.3. Additional Services

3.3.1. LDAP

There is no standalone LDAP servers configured. The servers are replica from an external
directory. This means that both are configured independently and are accessed only for read
operations.

If the organization uses Kerberos, all Kerberos requests and password checks are done directly
by the external Kerberos server.

3.3. Additional Services | 19

© Scibian Projet — v1.9, 2019-04-05 -

3.3.2. Bittorrent

Diskless image files are downloaded by the nodes with the BitTorrent protocol. The cluster
provides a redundant tracker service with OpenTracker and two server machines are configured
to always seed the images.

An Apache server is used to serve the torrent files for the diskless images (HTTP Live).

3.3.3. Slurm

Slurm provides the job management service for the cluster. The controller service (SlurmcCtld)
runs in an Active/Passive configuration on a pair of servers (batch nodes). The state is shared
between the controller nodes. This can be achieved with a CephFS mount or with an NFS HA
server. CephFS does not permit to support a large number (thousands) of jobs yet.

The SlurmDBD service also runs on these two servers.

3.3.4. MariaDB/Galera

SlurmDBD uses a MySQL like database to store accounting information and limits. On Scibian
HPC Clusters this is provided by a MariaDB/Galera cluster which provides an Active/Active SQL
server compatible with MySQL.

This cluster is usually co-located with SlurmDBD service and Slurm Controllers (batch nodes).

3.3.5. Relays

The Additional Services include a set of relay services to the outside of the cluster for:

* Email (Postfix Relay)
e Network (NAT configured by Shorewall)
e Metrics (Carbon C Relay)

3.3.6. Monitoring

Cluster monitoring is done by Icinga2, the cluster is integrated inside an organization Icinga
infrastructure. The cluster hosts a redundant pair of monitoring satellites that checks the nodes.
The monitoring master is external to the cluster.

3.4. High-Availability

All services running on the cluster should be highly available (HA). Some services not critical for
normal cluster operation can be not highly available, but this should be avoided if possible.

20 | 3.4. High-Availability

===== - © Scibian Projet — v1.9, 2019-04-05

The following section lists the different techniques used to achieve high-availability of the cluster
services.

3.4.1. Stateless

Stateless services are configured the same way on all servers and will give the same answer to
all requests. These services include:

« DHCP

« TFTP

« NTP

* DNS

e LDAP Replica

* HTTP Secret

e HTTP Boot

e HTTP Live

e Ceph RadosGW

* APT Proxy

e Carbon Relay

* Bittorrent Tracker

 Bittorrent Seeder

 SMTP Relay
Clients can provide a list of potential servers that will be tried in turn. If the client do not

automatically accept multiple servers, it is possible to use the Consul service to get a DNS entry
(xxx. servi ce. vi rtual) that will always point to an available instance of the service.

As a last resort and for services that do not need Active/Active (Load Balancing) capabilities, it
is possible to use a Virtual IP address (VIP). HTTP Live and Carbon Relay uses this technique.

3.4.2. Native Active/Active

Some services have native internal mechanisms to share states between the servers.
Contacting any server will have the same effect on the state of the service, or the service has an
internal mechanism to get the right server. These services behave this way:

* Ceph Rados
* MariaDB/Galera

e Consul

3.4. High-Availability | 21

© Scibian Projet — v1.9, 2019-04-05 -

3.4.3. Native Active/Passive

Services that have only one active server at any time, but the mechanism to select the active
server is internal to the service. This means all servers are launched in the same way and not
by an external agent like Keepalived or Pacemaker/Corosync. Services using this technique are:

* Ceph MDS (Posix CephFS server)
¢ Slurm Controller

e Omni-Path Fabric Manager or InfiniBand Subnet Manager

3.4.4. Controlled Active/Passive

The service can only have one active server at any one time and this failover must be controlled
by an external service. On the current configuration the only service requiring this setup is:

* NFS HA Server

22 | 3.4. High-Availability

===== - © Scibian Projet — v1.9, 2019-04-05

Chapter 4. Conventions

In order to restrain the complexity of the configuration of a Scibian HPC cluster, some naming
and architecture conventions have been defined. Multiple components of the software stack
expect these conventions to be followed in order to operate properly. These conventions are
actually rather close to HPC cluster standards, then they should not seem very constraining.

e The operating system short hostname of the nodes must have the following format:
<pr ef i x><r ol e><i d>. This is required by the association logic used in Puppet-HPC to
map a node to its unique Puppet role. This point is fully explained in the role section of
Puppet-HPC reference documentation.

e The FQDN [3: Fully-Qualified Domain Name] hostnames of the nodes must be similar to
their network names on the backoffice network. In other words, the IP address resolution on
the cluster of the FQDN hostname of a node must return the IP address of this node on the
backoffice network.

Chapter 4. Conventions | 23

© Scibian Projet — v1.9, 2019-04-05 -

Chapter 5. Advanced Topics

5.1. Boot sequence

5.1.1. Initial common steps

The servers of the cluster can boot on their hard disks or via the network, using the PXE
protocol. In normal operations, all service nodes are installed on hard disks, and all nodes of the
userspace (compute and frontend nodes) use the network method to boot the diskless image.
A service node can use the PXE method when it is being installed. The boot sequence between
the power on event on the node and the boot of the initrd is identical regardless of the system
booted (installer or diskless image).

The steps of the boot sequence are described on the diagram below:

|
|
|
load] 1

PXE ""ﬂ(J DHCP request >

]
H
A TP parameters ‘ﬁ
|

+ filename undionly.kpxe

|
TFTP GEThundionlykpxe >
1
load | TPXE]rom
iPXE romy DHCP request -

Lt
1

1P parameters + filename
http://server/cgi-bin/scibian-hpc-netboot/bootmenu.py?node=${hostname}

HTTP GET http://server/cgi-bin/scibian-hpc-netboot/ ?node=${

"\, run cgi script
ootmenu.py

parse config file and
generate bootmenu file
print A | ipxe file with default choice and parameters based on roles
i -
and wait for cho:ce‘
I
I

I
]

When a node boots on its network device, after a few (but generally time-consuming) internal
checks, it loads and runs the PXE ROM stored inside the Ethernet adapter. This ROM first
sends a DHCP request to get an IP address and other network parameters. The DHCP server
gives it an IP address alongside the filename parameter. This filename is the file the PXE ROM
downloads using the TFTP protocol. This protocol, which is rather limited and unreliable is used
here because the PXE ROM commonly available in Ethernet adapters only supports this
network protocol.

The file to download depends on the type of nodes or roles. On Scibian HPC clusters when
using the Puppet-HPC software stack, the required filename for the current node is set in Hiera

24| 5.1. Boot sequence

===== - © Scibian Projet — v1.9, 2019-04-05

in the boot _par ans hash. If not defined in this hash, the default filename is undi onl y. kpxe
which is actually the PXE chainloaded version of iPXE for legacy BIOS systems. This filename
can be altered to support specific node settings such as virtual machine and nodes booting in
UEFI mode.

iPXE is open source network boot software with many advanced features (not available in NIC
PXE ROM) such scripting/menu support, HTTP and DNS protocols support and many more.
This way, it is used as a workaround to hardware PXE ROM limitations.

The virtual machines boot like any other node, except QEMU uses iPXE as the PXE
implementation for its virtual network adapters. This means that the virtual machines go directly
to this step.

The iPXE bootloader must perform another DHCP request since the IP settings are lost when
the bootloader is loaded. The DHCP server is able to recognize this request originates from an
iPXE ROM. In this case, it sets the filename parameter with an HTTP URL to a Python CGI
script boot menu. py.

The IPXE bootloader sends the GET HTTP request to this URL. In this request, it also adds to
the parameters its hostname as it was given by the DHCP server.

On the HTTP server side, the Python CGI script boot menu. py dynamically generates an iPXE
boot menu for the node, with all entries available on the cluster and the default entry set
according to node settings. Please refer to the iPXE Bootmenu Generator section for detailed
explanations about this script.

Without any action from the administrator, iPXE waits for the menu 3 seconds timeout, then
automatically selects and loads the node default boot entry set by the CGI script.

5.1.2. Disk installation

Here is the sequence diagram of a Scibian server installation on disk, right after the PXE boot
common steps:

5.1. Boot sequence | 25

http://ipxe.org

© Scibian Projet — v1.9, 2019-04-05 -

initial
common steps
HTTP GET vmiinuz (Linux kernel) 3,

A vmliinuz file
HTTP GET initrd.img ~ud

initrd.img file 1

oad kernel + inird I
| parameters :

url=http://.../preseedator.py?node=$ {hostname}
|

v |
run ‘ I il
debian-installer - DHCP rbquest

PP

L)
HTTP GET preseedamr.pyvnode=§{nl:smame}
>

A debian-installer preseed 1

\

HTTP GET Debian packages

packages

|
|
HTTP GET :

hpc-config-apply configuration
L |

; A hpc-config-apply config files

run
hpc-config-apply

NOdE b00 s

The iPXE ROM downloads the Linux kernel and the initrd archive associated with the boot menu
entry. The kernel is then run with all the parameters given in the menu entry.

The initrd archive contains the Debian Installer program. This program starts by sending a new
DHCP request to get an IP address. Then, it downloads the Debian installer preseed file located
at the URL found in the “url * kernel parameter. This preseed file contains all the answers to the
questions asked by the Debian Installer program. This way, the installation process is totally
automated and does not require any interaction from the administrator.

By default on Scibian HPC clusters, this URL is directed to a Python CGI script
pr eseedat or. py which dynamically generates the preseed file for the node given in
parameter. Please refer to Debian Installer Preseed Generator section for detailed explanations
about this script.

During the installation, many Debian packages are retrieved from Debian repositories.

At the end of the installation, Debian Installer runs the commands set in the | at e_conmand
parameter of the preseed file. On Scibian HPC clusters, this parameter is used to run the
following steps:

» Download through HTTP the hpc-config-apply script,

* Run hpc-config-apply inside the chroot environment of the newly installed system.
Detailed functionning of the hpc-config-apply script is not described here, but it involves:

» downloading and installing additional Debian packages depending on the node role,

26 | 5.1. Boot sequence

===== - © Scibian Projet — v1.9, 2019-04-05

 executing various types of software

e and writing various configuration files on the installed system.

Please refer to hpc- confi g- appl y(1) man page for a full documentation on how to use this
script.

Finally, when the execution of the commands are over, the server reboots.

Once the servers are installed, they are configured through IPMI with Clara to boot on their disk
devices first. Please refer to Clara documentation for further details.

5.1.3. Diskless boot

Here is the sequence diagram of the boot process for diskless nodes, right after the PXE boot
common steps:

initial
common steps
HTTP GET vmlinuz

(Linux kernel) >|

‘ vmiinuz file i
HTTP GET initrd.im

load kernel + inird
parameters : initrd.img file

I
5 I
fetch=http://file.torrent]
cowsize=xxx (M 1
disk_format=/dev/xxx

disk_raid=... :

run
live-boot scripts (! D#CP request

PP
HTTP GET file.torrent > II

run ctorrent ¢ | fle torrent
GET seeder list

\ A

A A —

B

ist of seeders.

GET squashfs image shunks

A squashfs image shunks
L

N

system service

node ready

The iPXE bootloader downloads the Linux kernel and the initrd image defined within the default
boot menu entry and runs them with the provided parameters. Among these parameters, there
are notably:

» f et ch whose value is an HTTP URL to a torrent file available on the HTTP server of the
supercomputer,

e cowsi ze whose value is the size of the ramfs filesystem mounted on /lib/live/mount/overlay,

e di sk_f or mat if this parameter is present the device indicated is formatted on node boot,

5.1. Boot sequence | 27

https://github.com/edf-hpc/puppet-hpc/blob/master/doc/manpages/hpc-config-apply.md
https://github.com/edf-hpc/puppet-hpc/blob/master/doc/manpages/hpc-config-apply.md

© Scibian Projet — v1.9, 2019-04-05 -

e di sk_rai d if this parameter is present a software raid is created with the parameters
indicated on node boot.

Within the initrd images, there are several specific scripts that come from | i ve- boot, | i ve-
torrent and specific Scibian Debian packages. Please refer to the following sub-section
Advanced Topics, Generating diskless initrd for all explanations about how these scripts have
been added to the initramfs image.

These scripts download the torrent file at the URL specified in the f et ch parameter, then they
launch the ct or r ent BitTorrent client. This client extracts from the torrent file the IP address of
the BitTorrent trackers and the names of the files to download using the BitTorrent protocol.
There is actually one file to download, the SquashFS image, that the client will download in P2P
mode by gathering small chunks on several other nodes. Then, once the file has been fully
retrieved, the image is mounted after executing some preliminary tasks like formatting the disk
or setting up a raid array if it has been indicated in the kernel options passed by the boot menu.
Then, the real init system is started and it launches all the system services. One of these
services is hpc- confi g- appl y. ser vi ce which runs the hpc-config-apply script.

As for the part regarding the installation with a disk, how the hpc-config-apply script works is not
described here. Please refer to hpc- confi g- appl y(1) man page for a full documentation on
this topic.

Finally, the node is ready for production.

5.2. IPXE Bootmenu Generator

By default on Scibian HPC clusters, the DHCP servers sends as filename to iPXE ROM an
HTTP URL to a Python CGI script boot menu. py which is a iPXE bootmenu generator.
Optionally, this behaviour can be altered by modifying i scdhcp: : boot nenu_ur| parameter in
Hiera repository.

The Python CGI script boot menu. py is provided by sci bi an- hpc- net boot - boot menu
package.

On the HTTP server side, this script initially parses the nodes boot parameters configuration
YAML file / et c/ sci bi an- hpc- net boot/ boot - par ans. yanm . This file provides all node
specific boot parameters, including ethernet boot device, default OS, media and version, etc.
When looking for a parameter (ex: 0s), the script first searches into the nodeset sections whose
node is member (ex: node f bcn02 is member of nodeset f bcn[01- 10]). If not found, the
parameter is finally read into the def aul t s section.

The /et c/ scibi an- hpc- net boot/ boot - parans. yam file is deployed by Puppet-HPC
based on the following inputs:

e the default values provided by Puppet-HPC boothttp module within
boot _parans_def aul t s parameter,

28 | 5.2. iIPXE Bootmenu Generator

https://github.com/edf-hpc/puppet-hpc/blob/master/doc/manpages/hpc-config-apply.md
https://github.com/edf-hpc/puppet-hpc/blob/master/doc/manpages/hpc-config-apply.md

===== - © Scibian Projet — v1.9, 2019-04-05

« the DNS nameservers and P2P tracker computed by Puppet-HPC boot syst em : server
profile,

e the boot _par ans hash parameter in Hiera repository.
Then, the script compiles sequentially all the menu entries provided as YAML files in directory

/ et ¢/ sci bi an- hpc- net boot/ nmenu/ entri es. d. The YAML files must respect the following
format:

<0S>:
<nedi a>:
<versi on>:

| abel : <lI abel >
[dir: <di r>]
initrd: <initrd>
kernel: <initrd>
opt s: <opt s>

Where:

e <0s> is the operating system name (ex: sci bi an9)
e <medi a> is the symbolic name of a media where the OS is deployed (di sk orramn)
e <ver si on> is a symbolic name of an entry version (ex: mai n ort est)
An <os> can contain multiple <nedi a>, a <nedi a> can contain multiple <ver si on>. An entry

is defined by the concatenation of these 3 parameters, ex: sci bi an9- di sk- rmai n. Then, each
entry is defined by the following parameters:

| abel : the label of the entry visible in the boot menu

di r (optional): the subdirectory of kernel and initrd files in the ${ base-url} (see below),
default value is empty.

i ni trd:the file name of the initrd archive

ker nel : the file name of the Linux kernel

e opt s: the arguments given to the Linux kernel

The ${ base-url} is a iPXE placeholder defined by the CGI script for every entries. Its value
mainly depends on the media of the entry:

« for di sk media, the value is htt p: // <di ski nstal | _server >/ di sk/ <os>

 for rammedia, the value is ht t p: / / <di skl ess_server >/ <os>

The <*_server > parameters are defined in nodes boot parameters YAML configuration file
/ et ¢/ sci bi an- hpc- net boot / boot - par ans. yan .

The parameters of an entry can be templated with all node boot parameters and the OS, media,
version and initrd of the entry. As an example, here is a valid entry:

5.2. iPXE Bootmenu Generator | 29

© Scibian Projet — v1.9, 2019-04-05 -

sci bi an9
di sk:
mai n:

label: Install {{ os }}
dir: debi an-instal |l er/ and64
initrd: initrd.gz
kernel : i nux
opt s: >

initrd={{ initrd }}

url =http://{{ diskinstall_server }}/cgi-bin/scibian-hpc-
net boot / pr eseedat or . py?node=%${ host nane}

consol e={{ console }}

auto

interface={{ boot_dev }}

| ocal e={{ | ocale }}

consol e- keymaps- at / keymap={{ keymap }}

keyboar d- confi gur ati on/ xkb- keymap={{ keymap }}

| anguagechooser/ | anguage- name={{ | anguage }}

net cf g/ get _domai n={{ donmin }}

net cf g/ get _nameservers="{{ nanmeservers|join(' ") }}"

net cf g/ no_defaul t _route=true

debi an-i nstal | er/ add- ker nel - opt s=consol e={{ console }}

priority=critica

sci bian-installer

All the parameters between double curly braces (ex: {{ boot _dev}}) are dynamically replaced
by node boot parameters. This way, entries can be defined in a generic way.

The YAML entries files in directory / et c/ sci bi an- hpc-net boot/ nmenu/entries.d are
read sequentially. The entries provided in the next files can override entries defined in previous
files. In other words, only the last definition of an entry is considered. As an example, the entry
sci bi an9- di sk- mai n defined in 0_def aul t. yanl can be overridenin 1 ot her.yam .

The sci bi an- hpc- net boot - menu provides default entries with file 0_def aul t. yam . All
the entries defined in this file can be overriden with Puppet-HPC by setting the
profiles::bootsystem: menu_entries hash parameter in Hiera repository.

5.3. Debian Installer Preseed Generator

By default on Scibian HPC clusters, the URL provided in the bootmenu entries for the Debian
installer preseed (sci bi an*-di sk-* entries) is actually directed to a Python CGI script
pr eseedat or. py. This behaviour can be altered by overriding the respective menu entries,
please refer to iPXE Bootmenu Generator section for explanations.

This CGI script pr eseedat or . py dynamically generate a preseed for Debian installer for the
node given in parameter. This CGI script is provided by the sci bi an- hpc-net boot -
pr eseedat or package.

In the first place, the script reads the nodes boot parameters located in file / et ¢/ sci bi an-
hpc- net boot / boot - par ans. yani . Please refer to iPXE Bootmenu Generator section to
understand how this file is built.

30 | 5.3. Debian Installer Preseed Generator

===== - © Scibian Projet — v1.9, 2019-04-05

Then, it parses its YAML configuration file / et c/ sci bi an- hpc-
net boot/installer/installer.yam . This file basically contains all debian installer
related parameters such as the URL to the APT mirror/proxy and the list of additional
repositories. The content of this file is based on the following inputs:

e the default values provided by Puppet-HPC boothttp module within
instal |l er_options_defaul ts parameter,

« the list of additional APT repositories computed by Puppet-HPC boot syst em : server
extracted from Hiera in profil es: : cl uster::apt_sources hash parameter.

e« theprofiles::bootsystem:installer_options hash parameterin Hiera repository.

Finally, the preseedator. py script generates the preseed based on the template file
/ et c/ sci bi an-hpc-netboot/installer/preseed.jinja2. The template is filled with
parameters previously loaded.

The template provides a mechanism to download an external partition schema file from the
installation server (di ski nstall _server in boot - parans. yam). The URL directs to an
another Python CGI script parti ti oner. py. This script is also provided by sci bi an- hpc-
net boot - pr eseedat or package.

This script searches for a partition schema file in directory /etc/scibian-hpc-
net boot /i nstal | er/ schenas in the following order:

1. nodes/ <node> where <node> is the hosthame of the node,
2. rol es/ <r ol e> where <r ol e> is the role name of the node,

3. conmon

The first found file is returned by the script. By default, only the conmon file is provided by the
package. With Puppet-HPC, it is possible to deploy node or role specific schemas by setting the
boot http:: partition_schenmas array in Hiera repository.

5.4. Frontend nodes: SSH load-balancing and high-
availability

The frontend nodes offer a virtual IP address on the WAN network that features both an highly-
available and load-balanced SSH service for users to access the HPC cluster. The load-
balancing feature automatically distributes users on all available frontend nodes. This load-
balancing is operated with persistence so that users (based on their source IP address) are
always redirected to the same frontend node in a time frame. Behind the virtual IP address, the
high-availability of the SSH service is also ensured in case of outage on a frontend node. These
load-balancing and high-availability features are ensured by the Keepalived software.

For security reasons, a firewall is also set up on the frontend nodes to control outgoing network
traffic. This firewall service is managed by Shorewall, a high-level configuration tool for Linux
netfilter. Because of all the various network flows involved in Keepalived, it must be tightly

5.4. Frontend nodes: SSH load-balancing and high-availability | 31

© Scibian Projet — v1.9, 2019-04-05 -

integrated with the firewall rules. The following diagram illustrates both the network principles
behind the high-availability/load-balancing mechanisms and the integration with the software
components of the firewall:

s \

frontend?2 (—3] sshd
shorewall
keepalived
Qo
netfilter))
OUTPUT chain ipvs
wan
MAC mf2
fSSH request] fSSH request] real IP address if2 d loopback
d — €} HA IP address ipv
- st IP: ipv L ———
l dst IP: ipv J l MAC: mfl J k)
 {— \
T)] frontendl sshd
wan
users frontend shorewall
default c lived
gateway [P ecpalive
dst IP: | ¥ MASTER
MAC: mf2)
OUTPUT chain ipvs

wan

MAC mfl

| real IP address ifl d loopback

HA IP address ipv

R J

Figure 3. sshd load-balancing HA mechanism with firewall integration

The Keepalived sofware checks all the frontend nodes using the VRRP [4: Virtual Router
Redundancy Protocol] protocol on the WAN network interfaces (purple arrow in the diagram).
This protocol must be allowed in the OUTPUT chain of the firewall so that Keepalived can work

properly.

On the master frontend node, the HA virtual IP address is set on the network interface attached
to the WAN network. The Keepalived software configures the IPVS [5: IP Virtual Server] Linux
kernel load-balancer to redirect new TCP connections with a Round-Robin algorithm. Therefore,
a part of the TCP connections is redirected to the sshd daemon of other frontend nodes
(orange arrow in the diagram). An exception must be specified in the OUTPUT chain of the
firewall to allow these redirected connections.

To perform such redirections, IPVS simply changes the destination MAC address, to set the
address of the real destination frontend, in the Ethernet layer of the first packet of the TCP
connection. However, the destination IP address does not change: it is still the virtual IP
address.

On the slave frontend nodes, the HA virtual IP address is set on the loopback interface. This is

32| 5.4. Frontend nodes: SSH load-balancing and high-availability

===== - © Scibian Projet — v1.9, 2019-04-05

required to make the kernel accept the redirected packets from the master frontend node
addressed to the virtual IP address. In order to avoid endless loops, the IPVS redirection rules
are disabled on slave frontend nodes or else, packets would be redirected endlessly.

By default, the Linux kernel answers the ARP requests coming from any network device for any
IP address attached to any network device. For example, on a system with two network devices:
et hO with i pO and et hl with i p1, if an ARP request is received for i p1 on et h0, the kernel
positively responds to it, with the MAC address of et h0. Though it is convenient in many cases,
this feature is annoying on the frontend nodes, since the virtual IP address is set on all of them.
Consequently all frontend nodes answer the ARP requests coming from the WAN default
gateway. In order to avoid this behaviour, the net . i pv4. conf. <netif>. arp_i gnore and
net.i pv4. conf. <netif>. ar p_announce sysctl Linux kernel parameters, where <neti f >
is the network interface connected to the WAN network, are respectively set to 1 and 2. Please
refer to the Linux documentation for more details on these parameters and their values:
http://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

The Keepalived software also checks periodically if the sshd service is still available on all
frontend nodes by trying to perform a TCP connection to their real IP addresses on the TCP/22
port (green arrow in the diagram). An exception must be present in the OUPUT chain of the
firewall to allow these connections.

There is an unexplained behaviour in the Linux kernel where the Netfilter conntrack module
considers that new TCP connections redirected by IPVS to the local sshd daemon have an
invalid cstate. This point can be verified with well placed iptable rules using the LOG destination.
This causes the TCP SYN/ACK answer from the sshd to be blocked by the OUTPUT chain
since it considers the connection is new and not related to any incoming connections. To
workaround this annoying behaviour, an exception has been added in the OUTPUT chain of the
firewall to accept connections with a source port that is TCP/22 and a source IP address that is
the virtual IP address. This is not totally satisfying in terms of security but there is no known
easy or obvious way to exploit this security exception from a user perspective for other
purposes.

If a slave frontend node becomes unavailable, Keepalived detects it either with VRRP checks, or
with TCP checks in case only the sshd daemon is crashed. The IPVS rules are changed
dynamically to avoid redirecting new TCP connections to this failing node.

If the master frontend node becomes unavailable, the Keepalived software selects a new master
node within the other frontend nodes. Then, on this new master node, Keepalived restores the
IPVS redirection rules (since they were previously disabled to avoid loops) and moves the virtual
IP address from the loopback interface to the WAN network interface.

If a frontend node is scheduled to be turned of, it is possible to drain it.

5.4. Frontend nodes: SSH load-balancing and high-availability | 33

http://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

© Scibian Projet — v1.9, 2019-04-05 -

5.5. Service nodes: DNS load-balancing and high-
availability

This diagram gives an overview of the load-balancing and high-availability mechanisms involved
in the DNS service of the Scibian HPC clusters:

generic service nodes

'4 . ™\ { N N 4 R
genericl generic2 genericn
) VRRP _ .
keepalived 7= keepalived =g—---=-r---- —> keepalived
bind | !< bind | ! bind |
5 i i
1 E 1 1

ipvl

J \ * J \ * J
ipv2 ipvn ;

DNS requests

resolv.conf

puppet —%1(— app

options rotate/timeout
+ DNS servers list fgdn_rotate()

Figure 4. DNS service load-balancing and high-availability

On Linux systems, when an application needs to resolve a network hostname, it usually calls
the get host bynane*() and getaddrinfo() functions of the libc. With a common
configuration of the Name Service Switch (in the file /etc/nsswitch.conf), the libc searches for
the IP address in the file /etc/hosts and then fallbacks to a DNS resolution. The DNS solver
gathers the IP address by sending a request to the DNS nameservers specified in the file
/etc/resolv.conf. If this file contains multiple nameservers, the solver sends the request to the
first nameserver. If it does not get the answer before the timeout, it sends the request to the
second nameserver, and so on . If the application needs another DNS resolution, the solver will
follow the same logic, always trying the first nameserver in priority. It implies that, with this
default configuration, as long as the first nameserver answers the requests before the timeout,
the other nameservers are never requested and the load is not balanced.

This behavior can be slightly altered with additional options in the file /etc/resolv.conf

34| 5.5. Service nodes: DNS load-balancing and high-availability

===== - © Scibian Projet — v1.9, 2019-04-05

e options rotate: this option tells the libc DNS solver to send requests to all the
nameservers for successive DNS requests of a process. The DNS solver is stateless and
loaded locally for the processes as a library, either as a shared library or statically in the
binary. Therefore, the rotation status is local to a process. The first DNS request of a process
will always be sent to the first nameserver. The rotation only starts with the second DNS
request of a process. Notably, this means that a program which sends one DNS request
during its lifetime, launched n times, will send n DNS requests to the first nameserver only.
While useful for programs with long lifetime, this option can not be considered as an efficient
and sufficient load-balancing technique.

e options tineout: 1:this option reduces the request timeout from the default value i.e. 60
seconds to 1 second. This is useful when a nameserver has an outage since many
processes are literally stuck waiting for this timeout when it occurs. This causes many
latency issues. With this option, the libc DNS solver quickly tries the other nameservers and
the side-effects of the outage are significantly reduced.

On Scibian HPC clusters, Puppet manages the file /etc/resolv.conf and ensures these two
options are present. It also randomizes the list of nameservers with the f qdn_r ot at e()
function of the Puppet stdlib community module. This function randomizes the order of the
elements of an array but uses the f qdn fact to ensure the order stays the same for a node with
a given FQDN. That is, each node will get a different random rotation from this function, but a
given node’s result will be the same every time unless its hosthame changes. This prevents the
file content from changing with every Puppet runs. With this function, all the DNS nameservers
are equivalently balanced on the nodes. Combined with the opti ons rotate, it forms an
efficient load-balancing mechanism.

The DNS servers are managed with the bi nd daemon on the generic service nodes. Each
generic service nodes has a virtual IP address managed by a keepal i ved daemon and
balanced between all the generic service nodes. The IP addresses of the nameservers
mentioned in the file /etc/resolv.conf on the nodes are these virtual IP addresses. If a generic
service node fails, its virtual IP address is automatically routed to another generic service node.
In combination with opti ons ti nmeout: 1, this constitutes a reliable failover mechanism and
ensures the high-availability of the DNS service.

5.6. Consul and DNS integration

This diagram illustrates how Consul and the DNS servers integrate to provide load-balanced
and horizontally scaled network services with high-availability:

5.6. Consul and DNS integration | 35

© Scibian Projet — v1.9, 2019-04-05

admin node

[consult H consul client J
= . A h #

=" gossip

7 : el . : \ —\
genericl ’] (genencZ : genericn
raft + gossip (—L\
consul consul =—------- consul
. server server server
generic
service 3 3 3
nodes Gy By By
(httpd | ([bind)| | | [httpd | [bind | (httpd | [bind |
\ S . . ' S . . . S
ipl ipvl ip2 ipv2 ipn ipvn
(93
L ‘,4’;
DNS request
HTTP ttp. virtual. *
request
Round-robin
DNS answer
ip[1-4]

http
client

Figure 5. Consul, DNS server and services integration

resolv.conf

The Consul agent daemon can run in two modes: server and client. The cluster of Consul
servers maintains the state of the cluster using the raft protocol. The clients communicate with
the servers to detect failures using the gossip protocol. Both agents expose the data of the
Consul cluster through a HTTP REST API. On Scibian HPC clusters, the Consul servers run on
the generic service nodes while the admin node runs a client agent.

As explained in the Software architecture section, Consul discovers network services on a pool
of nodes. The services discovered by Consul on Scibian HPC clusters are hosted on the
generic service nodes. Each Consul server is responsible for checking its locally running
services, such as an HTTP server for example. The state being constantly shared by all Consul
agents, every agent is actually able to tell where the services are available. Consul notably
provides a DNS interface. Given a particular virtual hostname referring to a service, Consul can
give the IP addresses of the servers currently running this service.

Consul is not designed to operate as a full DNS server. It listens for incoming requests on an
alternative UDP port for a particular sub-domain vi rt ual . <donmai n>, where <donai n> is
configurable and depends on the cluster.

On the nodes, the clients are configured to connect to services in this particular sub-domain, for
example http. virtual . <domai n> for the HTTP service. The DNS requests sent by the

36 | 5.6. Consul and DNS integration

===== - © Scibian Projet — v1.9, 2019-04-05

clients are received by the bi nd daemon through the virtual IP addresses of the generic service
nodes, as explained in DNS Load-balancing and High-availability section. The DNS bi nd
daemon is configured to forward the requests on the virtual sub-domain to the local Consul
agent. The Consul agent answers the DNS request with the static IP address of the generic
service nodes running this service, in random order.

In this architecture, both the DNS requests to the Consul servers and the services (eg. HTTP)
requests are load-balanced on all the generic service nodes in high-availability mode. The same
mechanism also applies to APT proxies, Ceph RADOS gateways, and so on.

The Consul t utility is installed on the admin node to request the current status of the Consul
cluster. It connects to the REST API of the Consul client running locally and prints the status on
the standard output.

5.7. Scibian diskless initrd

5.7.1. The scibian-diskless-initramfs-config package

This package contains the necessary configuration in order to build an initramfs disk suitable for
Scibian diskless nodes. It depends on the following packages:

initramfs-tools
* live-torrent

* live-boot

e mdadm

* parted

initramfs-tools

I nitranfs-tool s is a Debian package that provides tools to create a bootable initramfs for
Linux kernel packages. The initramfs is a compressed cpio archive. At boot time, the kernel
unpacks that archive into RAM, mounts and uses it as the initial root file system. The mounting
of the real root file system occurs in early user space.

live-boot

The | i ve- boot package provides support for live systems. It depends on the | i ve- boot -
i nitranfs-config package, which is a backend for live-boot in initramfs config. In particular,
it provides the "live" script in /usr/share/initramfs-tools/scripts/live. This script is copied in the
generated initramfs and can download and unpack live system images used as the root
filesystem for diskles nodes.

5.7. Scibian diskless initrd | 37

https://github.com/edf-hpc/consult/
https://github.com/edf-hpc/consult/

© Scibian Projet — v1.9, 2019-04-05 -

live-torrent

The | i ve-torrent package provides support for BitTorrent downloading for live systems. It
depends onthe | i ve-torrent-initranfs-tools package, which provides the ct orr ent
binary (a bitorrent client) in the initramfs.

5.7.2. Generating the initramfs

With the packages described above installed on a Scibian system, it is possible to generate an
initramfs able to download the root live system image via the BitTorrent protocol.

On a Scibian HPC cluster, it is recommended to use the Cl ar a tool to generate the root live
system image, and to generate the corresponding initramfs. It is possible to specify in the Clara
configuration file which packages are mandatory in the image before generating the initramfs.

Here is an example of the "images" section of the Clara configuration file:

[i mages]

files_to_renove=/etc/udev/rul es.d/ 70- persi st ent -

net.rul es,/root/.bash_history,/etc/hostnane

et c_hosts=10. 0. 0. 1: service, 10. 0. 0. 2: adm nl
extra_packages_i mage=hpc- confi g- appl y, sci bi an- hpc- conput e
packages_i nitrd=sci bi an-di skl ess-initranfs-config

With this configuration, Cl ar a follows these steps to generate the initramfs:

1. Uncompress the squashfs image

2. Chroot in the directory created

3. Install the packages defined by the packages_i ni t r d key in the Clara config file

4. Generate the initramfs

5. Do not re-compress the squashfs image

This method is used to guarantee consistency with the kernel in the squashfs image. It is also

possible to generate an initramfs for an image based on Scibian9 with a machine installed on
Scibian8, for example.

38| 5.7. Scibian diskless initrd

===== - © Scibian Projet — v1.9, 2019-04-05

Installation procedure

This chapter describes how to install the Scibian HPC cluster software stack on a hardware
infrastructure compliant with the reference architecture. The first section gives a quick overview
of the main steps of the installation process. There are few requirements before starting the
installation, they are listed in the following sections. Then, the successive steps are described in
details. Finally, the chapter ends with the installation documentation of various optional features.

Chapter 5. Advanced Topics | 39

© Scibian Projet — v1.9, 2019-04-05 -

Chapter 6. Overview

The installation process of a Scibian HPC cluster starts with the administration cluster of the
reference architecture. The administration cluster is composed of the admin node and a pool of
generic services nodes. The generic services nodes run the base services required by all
nodes, then they are the entry point of the installation procedure.

The first generic service node takes the role of the temporary installation in order to install all
the other generic service nodes. When the generic services nodes are fully operational with the
base software services stack, the admin node is installed. Then, the process continues with the
services virtual machines and the set of additional services are installed.

Finally, the frontend and compute nodes of the userspace cluster are deployed and all the
additional services are setup to make the Scibian HPC cluster fully operational.

40 | Chapter 6. Overview

===== - © Scibian Projet — v1.9, 2019-04-05

Chapter 7. Requirements

There are a few requirements before starting up the cluster installation. This section aims to
inventory all of these requirements, with example values.

For the sake of simplicity, the examples values are used all along the rest of
the installation procedure documentation in various commands or code

NOTE . .
excerpts. These examples values must be replaced with values corresponding
to your environment where appropriate.

Description Example
Cluster name f oobar or $CLUSTER
Cluster prefix fb
Network domain name hpc. exanpl e. org or
$NETDOVAI N
Remote Git internal configuration repository (cf. note) ssh://forgel/ hpc-
privat edat a
DNS servers «1.1.1.1
©2.2.2.2
NTP servers o ntpl. exanpl e. org
o Nt p2. exanpl e. org
SMTP servers snt p. exanpl e. org
LDAP server | dap. exanpl e. or g
Groups of users in LDAP directory o grpusersl
e grpusers2

Chapter 7. Requirements | 41

© Scibian Projet — v1.9, 2019-04-05 -

Description Example

IP networks (with optional subnetworks) and adressing plan 4 IP networks (without
subnetworks):
* backoffice: 10. 1. 0. 0/ 24

¢ management:
10.2.0.0/ 24

e wan: 10. 3. 0. 0/ 24
* lowlatency: 10. 4. 0. 0/ 24

Areas (cf. note) One default area with
backoffice network or $MAI N

All MAC adresses

Network interfaces configuration of all the nodes and|Please refer to the following

equipments diagram for an example of
generic service network
configuration.

Local block storage configuration of all the nodes For generic services nodes: *

sda for system * sdb for Ceph

The deployment of Scibian HPC cluster is mainly based on Puppet-HPC. As
explained in the Software Architecture chapter of Puppet-HPC documentation,
it works in combination with an internal configuration repository containing all

NOTE configuration settings and data specific to your organization. This Git
repository does not have to be populated to proceed the installation. If it is
empty, the Internal repository section of this chapter explains how to initialize it
from scratch for Puppet-HPC.

The advanced network topologies support on Scibian HPC clusters, including
subnetworks and areas, relies on the features provided by Puppet-HPC stack.

NOTE For more details about areas concept and subnetworking possibilities, please
refer to Puppet-HPC Reference Documentation (chapter Software Architecture,
section Cluster Definition).

This diagram represents an exemple network interfaces configuration for the generic services
nodes of a Scibian HPC cluster:

42 | Chapter 7. Requirements

http://edf-hpc.github.io/puppet-hpc/

scibion

© Scibian Projet — v1.9, 2019-04-05

/" tbservice[1-4] A

vip 3 =

o —_ — ™

—_—= = = T =

— : =S o = =3

IP addresses & el ! gd 8| (=2 87

a5lleg| [T [EF] BT 23

DNS hostnames gollz2 |82 |Gz (2= g2

£al|§s| |8c| |8o] |ge g3

g€ Bl |59 |82 o

23|53 ES| |58] |8 58
virtual bridges

bonding bondbo

physical netifs

Figure 6. Example generic service nodes network interfaces

Chapter 7. Requirements | 43

© Scibian Projet — v1.9, 2019-04-05 -

Chapter 8. Temporary installation node

The first step of the installation process is to install the first generic service node. This node will
ensure the role of temporary installation node for the other generic service nodes. Before the
admin node is installed, all operations (unless explicitely stated) are realized on this temporary
installation node.

8.1. Base installation

Install Debian 9 Stretch base system using any of the official Debian installation media (CD,
DVD, USB key, PXE server, etc) at your convenience. Configure the network interfaces with
static IP addresses in compliancy with the cluster IP adressing plan. Set the hostname following
the architecture conventions, for example: f bser vi cel.

Once the node has rebooted on freshly installed system, add the Scibian 8 APT repositories to
the configuration:

echo <<EOF >/etc/apt/sources.|ist.d/scibian9.list
deb http://scibian.org/repo/ scibian9 min
EOF

Download and enable Scibian repository keyring:

apt-get install --allow unauthenticated scibian-archive-keyring
Update the packages repositories local database:

apt -get update
Install the following Scibian HPC administration node meta-package:

apt-get install scibian-hpc-admn

8.2. Administration environment

All the files manipulated during the installation process will be placed into a dedicated working
directory. The location of this directory is arbitrary, for example: ~r oot / i nst al | . This directory
will be designated as $ADM N in the following section of the installation procedure
documentation.

export ADM N=~root/install
nkdir $ADM N && cd $ADM N

44 | 8.1. Base installation

===== - © Scibian Projet — v1.9, 2019-04-05

Clone both Puppet-HPC and internal configuration repositories into this dedicated working
directory:

git clone https://github. com edf -hpc/ puppet-hpc.git
git clone ssh://forgel/ hpc-privatedata.git

At this stage, the internal repository can be populated with all files and data initially required to
install the cluster.

8.2. Administration environment | 45

© Scibian Projet — v1.9, 2019-04-05 -

Chapter 9. Internal configuration repository

The internal configuration repository required by Puppet-HPC is designed to be shared upon
multiple clusters in an organization. Then, it has to be initialized only for the first cluster
installation. Its structure and content is fully explained in the Software Architecture chapter of
Puppet-HPC documentation.

This section provides examples configurations snippets to quickstart this internal configuration
repository from scratch.

9.1. Base directories

If the internal configuration repository is fully empty and is initialiazed from scratch, a few base
directories must be created under its root.

This step must not be realized if the internal configuration repository is

IMPORTANT . . S
not empty, typically if it has already been initialized for another cluster.

cd $ADM N hpc- pri vat edat a
nkdir files hieradata puppet-config

9.2. Organization settings

Some settings are common to all HPC clusters of an organization, in particular settings
regarding the external services. To avoid duplication of these settings in all HPC cluster
configurations, they are defined once in the organization layer of the hiera repository shared by
all HPC clusters.

This step must be done only once for the organization. It can be

IMPORTANT
skipped safely if the organization layer YAML file already exists.

Initialize the file $ADM N hpc- pri vat edat a/ hi eradat a/ org. yan with the following
content:

Conmon #####H

org: 'conmpany' # | ower-case nane of the organization
|l ocale: 'en_US

#it###H DNS #H####
donmi n: "% ::cluster_nane}. hpc. exanpl e. org"
profiles::dns::client::search: "%hiera(' domain')} hpc.exanple.org"

profiles::dns::server::config_options
forwarders:

46| 9.1. Base directories

o © Scibian Projet — v1.9, 2019-04-05

#H#H#H NTP #####
profiles::ntp::server::site_servers:
"nt pl. exanpl e. org"
"nt p2. exanpl e. org"
#H#H#H APT #H###

profiles::cluster::apt_sources:

sci bi an9:
' 30_sci bi an9':
| ocati on:

"http:// % hiera('scibian_mrror_server')}/ %hiera('scibian_mrror_dir")}"
rel ease: 'scibian9'
repos: 'main'

pin:
priority: '1000'
originator: 'Scibian'
i ncl ude:

src: false
architecture: 'and64,i 386"
'50_stretch':
| ocati on:
"http:// % hiera('debian_mrror_server')}/%hiera('debian_mrror_dir')}"
rel ease: 'stretch’
repos: 'mmin contrib non-free'

pi n:
priority: ' 500'
originator: 'Debian'
i ncl ude:

src: false
architecture: 'and64,i 386"
'50_stretch-updates':
| ocation:
"http://%hiera(' debian_mrror_server')}/%hiera('debian_mrror_dir')}"
rel ease: 'stretch-updates’
repos: 'main contrib non-free'

pi n:
priority: ' 500
originator: 'Debian'
i ncl ude:

src: false
architecture: 'and64,i 386’
'50_stretch-security':
| ocation:
"http://%hiera(' debian_mrror_server')}/%hiera(' debian_sec_mrror_dir')}"
rel ease: 'stretch/updates’
repos: 'main contrib non-free'

pi n:
priority: ' 500
originator: 'Debian'
i ncl ude:

src: false
architecture: 'and64,i 386’

#i## SMIP/ Post fi x #####
profiles::postfix::relay::config_options:
rel ay_domai ns: " $nydestinati on exanple.org'
rel ayhost: 'snt p. exanpl e. org'

LDAP/ SSSD

| dap_external : 'I|dap. exanpl e.org'

9.2. Organization settings | 47

© Scibian Projet — v1.9, 2019-04-05 -

profiles::auth::client::sssd_options_domain:
| dap_sear ch_base: " dc=exanpl e, dc=or g’
| dap_user _search_base: 'ou=peopl e, dc=exanpl e, dc=or g’
| dap_group_search_base: 'ou=groups, dc=exanpl e, dc=or ¢

This configuration supposes the APT, NTP, SMTP, DNS and LDAP settings are
similar on all the HPC clusters of your organization. This might not be true in

NOTE some specific organization environments. In this case, the settings of the
affected services must be defined in the cluster specific layers of the hiera
repository instead.

The examples values must be replaced with the settings corresponding to your organization
environment.

9.3. Cluster directories

Some directories are required to store cluster specific file and settings inside the internal
configuration repository. Create these directories with the following command:

nkdir $ADM N hpc- pri vat edat a/ puppet - confi g/ $CLUSTER \
$ADM N hpc-privatedatal/fil es/ $CLUSTER \
$ADM N hpc- pri vat edat a/ hi er adat a/ $CLUSTER \
$ADM N hpc- pri vat edat a/ hi er adat a/ $CLUSTER/ r ol es

9.4. Puppet configuration

The hpc- confi g- push Puppet-HPC utility expects to find a Puppet and Hiera configuration
files for the cluster under the puppet - conf i g directory of the internal configuration repository.
Simply copy examples configuration files provided with Puppet-HPC:

cp $ADM N puppet - hpc/ exanpl es/ pri vat edat a/ { puppet . conf, hi era. yam } \
$ADM N hpc- pri vat edat a/ puppet - conf i g/ $CLUSTER/

The hi er a. yanl file notably specifies the layers of YAML files composing the hiera repository.
It can eventually be tuned for additional layer to fit your needs.

Puppet-HPC requires the cluster name and prefix to be a declared a YAML file cl uster -
nodes. yam . Technically speaking, this YAML file is deployed by hpc- confi g utilities on
every nodes in / et ¢/ hpc- confi g directory. It is then used as aconfiguration input file for the
external node classifer (ENC) cl uster-node-cl assifier provided with hpc-confi g.
Define the file $ADM N hpc- pri vat edat a/ puppet - confi g/ $CLUSTER/ cl ust er -
nodes. yam with the following content:

48| 9.3. Cluster directories

https://puppet.com/docs/puppet/latest/nodes_external.html

===== - © Scibian Projet — v1.9, 2019-04-05

cl uster _nane: f oobar
cluster_prefix: fb

If the cluster is composed of multiple areas, they must also be declared in this YAML file with
their associated roles. For example:

ar eas:
infra:
- admn
- service
user:
- front
- ¢cn

In this declaration, the admin and service roles are membered of the infra area, the front and cn
roles are membered of the user area.

9.5. Cluster definition

The cluster specific layers of the Hiera repository must be initialized with a sufficient description
of the HPC cluster. This description is the cluster definition.

9.5.1. Networks definition

A specific layer in the hiera repository stack is dedicated to all the networks settings of the HPC
cluster. This layer is defined in file $ADM N hpc-
privat edat a/ hi er adat a/ $CLUSTER/ net wor k. yani . Initialize this file with the following

content:

profiles::network::ib_enable: false
profiles::network::opa_enable: true

net _t opol ogy:

wan:
nane: " VAN
prefixes: ' wan'
i pnet wor k: '10.3.0.0
net mask: ' 255. 255, 255. 0'
prefix_| ength: " 24
gat eway: ' 10. 3. 0. 254"
br oadcast : '10. 3. 0. 255
i p_range_start: '10.3.0. 1
i p_range_end: '10. 3. 0. 254
firewal | _zone: " wan'
backoffi ce:
nane: ' CLUSTER
i pnet wor k: '10.1.0.0
net mask: C 255, 255, 2555, OF
prefix_| ength: '] 24'
gat eway: '10.1.0.0" # fbproxy
br oadcast : '10. 1. 0. 255
i p_range_start: '10.1.0. 1

9.5. Cluster definition | 49

© Scibian Projet — v1.9, 2019-04-05

i p_range_end: '10. 1. 0. 254"
firewal | _zone: ‘clstr'
pool 0:
ip_range_start: '10.1.0.1
i p_range_end: '10. 1. 0. 254"
| ow at ency:
nane: " LOALATENCY'
prefixes: ' opa’
i pnet wor k: '10.4.0.0
net mask: ' 255. 255. 255. 0
prefix_| ength: ' 24
broadcast : ' 10. 4. 0. 255'
i p_range_start: '10.4.0.1'
i p_range_end: '10. 4. 0. 254"
firewal | _zone: ‘clstr'
nmanagenent :
nane: " MGT
prefixes: "not’
i pnet wor k: '10.2.0.0'
net mask: ' 255. 255. 255. 0’
prefix_| ength: ' 24"
br oadcast : '10. 2. 0. 255’
i p_range_start: '10.2.0.1
i p_range_end: '10. 2. 0. 254"
firewal | _zone: ‘clstr'
bnc:
name: ' BMC
prefixes: ' bnt'
i pnet wor k: '10.2.0.0'
net mask: ' 255. 255, 255. 0'
prefix_| ength: '] 24"
broadcast: '10. 2. 0. 255'
i p_range_start: '10.2.0.1'
i p_range_end: '10. 2. 0. 254"
firewal | _zone: ‘clstr'

net wor k: : bondi ng_opti ons:
bondbo:
sl aves:
- enol
- eno2
options: ' node=802. 3ad primary=eth2 m i non=100 updel ay=200 downdel ay=200"
description: 'service nodes on backoffice/ ngt networks'

net wor k: : bri dge_opti ons:
br bo:
ports:
- bondbo
description: 'service nodes on backoffice network'
br gt :
ports:
- eno3
description: 'service nodes on nmanagenent network'
br wan:
ports:
- eno4
description: 'service nodes on WAN net wor k'

mast er _net wor k:
f bservicel:
fqdn: "fbservicel. %4 hiera(' domain')}"
net wor ks:
backof fi ce:
' DHCP_NMAC : ' aa: bb: cc: dd: ee: 00'

1P '10.1.0.1'
"device': " brbo'
"host nane': ' fbservicel

50 | 9.5. Cluster definition

scibion

| owl at ency:
IR
' device':

" host nane' :

bnt:

* DHCP_MAC :

"IP

" host nane' :

managenent :
1P
"device':

" host nane' :

wan:
"IP
' devi ce':

" host nane' :

f bservi ce2:
fqdn: "fbservi
net wor ks:

backof fice:

' DHCP_MAC :

1P
"device':

' host nane' :

| owl at ency:
IR
' device':

" host nane' :

bnt:

* DHCP_MAC :

"IP

" host nane' :

managenent :
1P
"device':

" host nane' :

wan:
"IP
' devi ce':

" host nane' :

f bservi ce3:
fqdn: "fbservi
net wor ks:

backof fice:

' DHCP_MAC :

1P
"device':

" host nane' :

| owl at ency:
IR
' device':

" host nane' :

bnt:

* DHCP_MAC :

"IP

" host nane' :

managenent :
1P
"device':

" host nane' :

wan:
"IP
' devi ce':

" host nane' :

f bservi ce4:
fqdn:
net wor ks:

© Scibian Projet — v1.9, 2019-04-05

'10.4.0.1°
"i b0’

' opaf bservi cel’

aa: bb: cc: dd: ee: 01"
10. 2. 0. 101"

" bncf bservi cel'

'10.2.0. 1"
"brngt’

ngt f bservi cel’

'10.3.0. 1
" brwan'

"wanf bservi cel'

ce2. % hiera(' domain')}"

'aa: bb: cc: dd: ee: 02'

'10.1.0.2
" brbo'

'fbservice2'

'10.4.0. 2
"i b0

' opaf bservi ce2'

aa: bb: cc: dd: ee: 03’
10. 2. 0. 102"

" bncf bservi ce2'

'10.2.0. 2
"brngt"’

ngt f bservi ce2'

'10.3.0.2
" brwan'

"wanf bservi ce2'

ce3. % hiera(' domain')}"

'aa: bb: cc: dd: ee: 04'

'10.1.0. 3
" brbo'

f bservi ce3'

'10.4.0.3'
"i b0’

' opaf bservi ce3'

aa: bb: cc: dd: ee: 05’
10. 2. 0. 103"

" bncf bservi ce3'

'10.2.0. 3"
"brngt"’

nyt f bservi ce3'

'10.3.0. 3’
" brwan'

"wanf bservi ce3'

"fbservice4. % hiera(' domain')}"

9.5. Cluster definition | 51

© Scibian Projet — v1.9, 2019-04-05

backoffi ce:
' DHCP_MAC : 'aa: bb:cc: dd: ee: 06'
TP '10.1.0. 4"
' devi ce': ' br bo'
"hostnane': 'fbservice4'
| ow at ency:
"IP '10.4.0. 4
"device': "i b0’
" host nanme' : ' opaf bservi ce4'
bnt:
' DHCP_MAC : ' aa: bb:cc: dd: ee: 07'
"IP '10.2.0.104'
"host nanme': ' bncfbservi ce4’
nmanagenent :
TP '10.2.0. 4"
' device': " brngt"’
"hostnane': ' ngtfbservice4'
wan:
"IP '10.3.0. 4
"device': " brwan'
" host nane' : ' wanf bservi ce4'

H gh-Availability Virtual |P addresses

Vi ps:

servi cel:
net wor k: ' backof fice'
ip: '10.1.0. 101"
host nane: " vi pf bservi cel’
router_id: 161
nmast er: 'fbservicel
menber s: 'fbservice[1-4]"
secret: "o hiera('vips_secret')}"
advert _int: '2'

servi ce2:
net wor k: " backof fi ce'
ip: '10. 1. 0. 102"
host nane: " vi pf bservi ce2'
router_id: 162
mast er: ' fbservi ce2'
nenber s: 'fbservice[1-4]"
secret: "o hiera('vips_secret')}"
advert_int: '2'

servi ce3:
net wor k: ' backof fice'
ip: '10. 1. 0. 103"
host nane: " vi pf bservi ce3'
router_id: 163
nmast er: ' fbservice3'
menber s: 'fbservice[1-4]"
secret: "o hiera('vips_secret')}"
advert _int: '2'

servi ce4:
net wor k: " backof fi ce'
ip: '10. 1. 0. 104"
host nane: " vi pf bservi ce4’
router_id: 164
mast er: ' fbservi ced’
nenber s: 'fbservice[1-4]"
secret: "o hiera('vips_secret')}"
advert_int: '2'

The first profiles::network::{ip,opa}_enable

define which high-performance

interconnect network technology is involved in the HPC cluster (InfiniBand or Intel Omni-Path).

52| 9.5. Cluster definition

===== - © Scibian Projet — v1.9, 2019-04-05

The net _t opol ogy hash basically define the adressing maps of the various IP networks of the
clusters, along with some metadata such as the network hostname prefixes, the DHCP dynamic
pools and the firewall zones associated to these IP networks.

The net wor k: : bondi ng_opti ons and networKk: : bri dge_opti ons hashes respectively
define all the network interfaces bondings and virtual bridges involved on the nodes of the HPC
cluster. Note that these settings are global to all nodes.

The nast er _net wor k hash defines the list of nodes and all their network interfaces with the
associated IP addresses, network hostnames and eventually MAC addresses (on the
administration and bmc networks).

Finally, the vi ps hash define the virtual highly-available IP addresses (VIP) managed by nodes
of the HPC cluster.

At this stage, the vips hash interpolates an undefined parameter
NOTE Vi ps_secret. It will be actually defined in Section 9.7.6, “VIP encryption
keys” within the area hiera layer.

Initially, the YAML file must contain all the IP network definitions and the network settings of all
the generic service nodes with their VIP.

9.5.2. General cluster settings

The cluster specific general parameters and services settings are located in file $ADM N hpc-
privat edat a/ hi er adat a/ $CLUSTER/ cl ust er. yanl . Initialize this file with the following
content:

user _groups: # Array of user groups allowed to access to the cluster
- 'grpusersl’
- 'grpusers2’

adm n_group: 'grpadm n'

#HHH#HE Ar eas #HHHHHH

Optionlly define areas (with associ ated networ k/ subnet wor ks) by
uncommenting the foll ow ng hash:

#
#ar eas:
infra:

net wor k: backoffice
subnet wor k: boi nfra
user:

net wor k: backoffice
subnet wor k: bouser
#

|If using only the default area, this paranmeter does not need to be defined.

#i##H#H | nst al | er ###H##H#
scibian_mrror_server: 'scibian.org'

scibian_mrror_dir: 'repo’
debi an_mirror_server: 'deb.debian.org' # debian geo mrror
debian_mrror_dir: ' debi an'

9.5. Cluster definition | 53

© Scibian Projet — v1.9, 2019-04-05 -

#it###t DNS C uster settings #####H#

profiles::dns::client::naneservers:
- '10.1.0.101" # VIP addresses of generic service nodes on administration
- '10.1.0.102" # network

- '10.1.0.103'
- '10.1.0. 104
profiles::dns::server::config_options:

|'i sten-on:
- '127.0.0. 1
- "10.1.0. 1 # Static | P addresses of generic service nodes on
- '10.1.0.2 # admi ni stration network
- '10.1.0.3
- '10.1.0. 4
- '10.1.0.101" # VIP addresses of generic service nodes on administration
- '10.1.0.102" # network
- '10.1.0.103
- '10.1.0.104'
- "10.2.0. 1 # Static | P addresses of generic service nodes on
- '10.2.0.2 # managenent network
- '10.2.0.3
- '10.2.0. 4

#H##H#HH Boot Syst em ###H###

boot _par ans:
fbservice[1-4]: # generic service nodes specific boot parans
boot dev: 'eno0'

hpc-config-apply configuration file downl oaded by the debian-installer.
boot http:: hpc_files:
"% hiera('website_dir')}/disk/hpc-config.conf":
source: "file:///etc/hpc-config.conf"

#itt DHCP ######

profiles::dhcp::default_options:
- "I NTERFACES=bradm # bridge interfaces of the generic service nodes on the
adm ni stration and nanagenent networks
profiles::dhcp::includes:

bo- subnet :

' pool _nane': ' subnet’

' subnet _nan®e': ' backof fice-defaul t'

"tftp': true

' pool " :
' use- host - decl - nanes' : ‘on'
' deny' : " unknown-cl i ent s’
"'max-| ease-tinme': '1800'
Range of | P addresses on the administration network
'range': '10.1.0.1 10.1.0. 254"
"include': '/ etc/ dhcp/ adm subnet’

ngt - subnet :

' pool _nane': ' subnet'

' subnet _nane': ' managenent - def aul t*

“tftp': fal se

' pool ' :
' use- host - decl - nanes' : ‘on'
‘deny' : "unknown-clients'
''max-| ease-tinme': ' 1800'
Range of | P addresses on the managenent network
'range': '10.2.0.1 10.2.0. 254"
"include': "/ etc/dhcp/ mgt _subnet "

Additionally to some general parameters (user _gr oups, adm n_gr oup), the initial version of
this file notably contains the configuration of the base services required to install nodes on disk

54| 9.5. Cluster definition

s © Scibian Projet — v1.9, 2019-04-05

(DNS, TFTR, HTTP, DHCP, Debian installer, etc).

Also, in order to prevent user to access the cluster during the installation process, it is
recommended to enable the maintenance mode in this file:

profiles::access:: mai ntenance_node: true

9.6. Service role

The Puppet role servi ce associated to the generic service nodes must be defined with the
corresponding profiles. This is achieved by initializing file $ADM N hpc-
pri vat edat a/ hi er adat a/ $CLUSTER/ r ol es/ servi ce. yanl with the following content:

profiles:
conmon
- profiles::cluster::comobn
- profiles::systend::base
- profiles::ssnp::client
- profiles::network::base
- profiles::dns::client
- profiles::access::base
- profiles::openssh::server
- profiles::openssh::client
- profiles::environment:: base
- profiles::environment::limts
- profiles::environment::service
- profiles::log::client
HW host
- profiles::hardware::ipm
- profiles::hardware::adni n_tuning
service
- profiles::hpcconfig::push
- profiles::hpcconfig::apply
- profiles::ntp::server
- profiles::openssh::client_identities
- profiles::clush::client
- profiles::ha::base
- profiles::http::secret
- profiles::http::system
- profiles::apt::proxy
- profiles::log::server
- profiles::dns::server
- profiles::bootsystem:server
- profiles::dhcp::server

profiles::network::gw _connect: 'wan

The first profiles (below the common comment) are common to all nodes of the cluster. The
profiles after the HW host comment are common to all bare metal nodes. The last profiles, after
the service comment, carry the base services hosted by the generic service nodes.

The last parameter profi | es: : net wor k: : gw_connect defines on which network’s gateway
the nodes use as their default route.

9.6. Service role | 55

© Scibian Projet — v1.9, 2019-04-05 -

9.7. Authentication and encryption keys

Cluster configurations comprises many sensitive data such as passwords, private keys,
confidential files, and so on. The Puppet-HPC stack provides an integrated mechanism for
storing these data securily in the internal configuration repository. This mechanism is fully
explained in the Puppet-HPC Reference Documentation (chapter Software Architecture, section
Sensitive Data Encryption). Basically, these data are encrypted using two keys:

» asymmetric PKCS7 key pair for encrypting values in Hiera with eyaml,

* symmetric AES key, named as the cluster password, for encrypting files.

These keys are also used to decrypt data on nodes of the cluster main area. If the cluster is
composed of only one area (ex: default), only these two keys are involved on the cluster.
Otherwise, additional and dedicated keys are used by the other areas to decrypt their sensitive
data.

In all cases, only the keys of the main area are used to manipulate
the sensitive data in the internal configuration repository. The keys
of the optional other areas are used dynamically and transparently by
the hpc-config utilities in the Puppet-HPC stack.

IMPORTANT

9.7.1. Main area keys bootstrap

The PKCS7 eyaml key pair must be created initially. First, create the directory for these keys:
nkdir -p /etc/ puppet/securel/keys
Then, setup the eyaml configuration to use this directory:

nkdir -p ~/.eyanl
cat << EOF > ~/.eyanl /config.yam

pkcs7_private_key: /etc/puppet/securel/keys/private_key.pkcs7. pem
pkcs7_public_key: /etc/puppet/secure/keys/ public_key. pkcs7. pem
EOF

And generate the keys with:
eyanm creat ekeys

Restrict modes and ownership properly on files and directories:

56 | 9.7. Authentication and encryption keys

s © Scibian Projet — v1.9, 2019-04-05

chnod 700 /etc/ puppet/secure

chown - R puppet: puppet /etc/puppet/securel/keys
chnod - R 0500 /etc/puppet/securelkeys

chnod 0400 /et c/ puppet/securel/ keys/ *. pem

Then, generate the cluster password:

openssl rand -base64 32

The output of this command must be saved encrypted with eyaml keys in the area layer of the
internal Hiera repository. Create the directory of this layer and edit the area YAML file with
eyam :

nkdi r $ADM N hpc- pri vat edat a/ hi er adat a/ $CLUSTER/ ar eas
eyanl edit $ADM N hpc- pri vat edat a/ hi er adat a/ $CLUSTER/ ar eas/ $MAI N. yam

Where $MAI N is the name of the main area (ex: def aul t ori nfra).

In the editor, add a line like this, and save:
cl uster_decrypt _password: DEC:: PKCS7[<t he password given by the openssl command>]!

Finally, store an encrypted archive of the eyaml keys in the internal configuration repository:

create main area eyanl directory
nkdir -p $ADM N hpc-privat edata/fil es/ $CLUSTER/ $MAI N/ eyant / $VAI N

build archive

tar cJf $ADM N hpc-privatedatal/fil es/ $CLUSTER/ $MAI N eyam / $MAI N/ keys. tar. xz \
-C /etc/ puppet/secure keys

encrypt archive

$ADM N puppet - hpc/ scri pt s/ encode-file.sh \
$ADM N hpc- pri vat edat a $CLUSTER \
$ADM N hpc-privat edat a/ fil es/ $CLUSTER/ $MVAI N eyam / $MAI N/ keys. t ar . xz

del ete tenporary unencrypted archive
rm $ADM N hpc- pri vat edata/fil es/ $CLUSTER/ $MAI N/ eyanl / SMAI N/ keys. t ar. xz

9.7.2. Other areas encryption keys

This step can be skipped if the cluster is composed of only one area. Otherwise, this step must
be repeated for all areas except the main one.

First, generate the cluster password of the area:

openssl rand -base64 32

9.7. Authentication and encryption keys | 57

© Scibian Projet — v1.9, 2019-04-05 -

Save the output into the area YAML file with eyam :

eyanml edit $ADM N hpc- pri vat edat a/ hi er adat a/ $CLUSTER/ ar eas/ $OTHER. yanl

Where $OTHER is the name of the other area (ex: user).

In the editor, add a line like this, and save:

cl uster_decrypt _password: DEC:: PKCS7[<t he password given by the openssl command>]!

Set a shell variable KEYS_DI R, with the path of the other area keys directory, in order to simplify
following commands:

export KEYS DI R=$ADM N hpc- pri vat edat a/fil es/ SCLUSTER/ $MAI N/ eyanl / $OTHER

Create the directories for storing the area eyaml keys, including a keys temporary subdirectory:

nkdir -p $KEYS DI R/ keys

Generate the area eyaml keys:

eyam createkeys \
--pkcs7-private-key $KEYS DI R/ keys/ private_key. pkcs7. pem\
--pkcs7-public- key $KEYS_ DI R/ keys/ public_key. pkcs7. pem

Build the archive and clean temporary files:

build archive
tar cJf $KEYS_ DI R keys.tar.xz \
-C $KEYS DI R keys

del ete tenporary keys subdirectory
rm-rf $KEYS Dl R/ keys

Finally, encrypt the archive and remove the unencrypted version:

encrypt archive

$ADM N puppet - hpc/ scri pt s/ encode-file.sh \
$ADM N hpc- pri vat edat a $CLUSTER \
$KEYS_DI R/ keys. tar. xz

del ete tenporary unencrypted archive
rm $KEYS_DI R/ keys. tar. xz

58 | 9.7. Authentication and encryption keys

===== - © Scibian Projet — v1.9, 2019-04-05

9.7.3. SSH host keys

The SSH host keys must stay consistent between node re-installations and/or diskless reboots.
To ensure this, the SSH host keys are generated in the cluster’s files directory of the internal
configuration repository before their first installation and/or diskless boot.

This cluster nodes classifier utility is run by the SSH hostkeys generation script to get the area
of the nodes. Initially, copy the configuration file of this utility to its target path:

cp $ADM N hpc- pri vat edat a/ puppet - conf i g/ $CLUSTER/ cl ust er - nodes. yam \
/ et c/ hpc-config/cluster-nodes. yanl

To generate the hostkeys, the script needs to know the local domain name of the cluster. By
default, the script will use the local domain of the machine where it runs by default. If this is not
correct you must provide the domain in argument. Run the script with the following command:

cd $ADM N && puppet - hpc/ scri pt s/ sync-ssh- host keys. sh \
hpc-privat edata $CLUSTER [$CLUSTER. $SNETDOVAI N]

This script ensures that all nodes present in the nast er _net wor k hash have valid SSH host
keys. During this step, the known_host s file will also be synchronized with the generated keys.
This file will be stored in hpc-
privatedatal/fil es/ $CLUSTER/ cl ust er/ssh/ known_host s.

9.7.4. SSH root key

For password-less SSH authentication from the admin and generic service nodes to all the other
nodes of the cluster, SSH authentication keys pair are deployed for root on the nodes.

First, create the rootkeys sub-directory in the cluster's files directory of the internal
configuration repository:

cd $SADM N && nkdir -p hpc-privatedatal/fil es/ $CLUSTER/ $VAI N r oot keys
Then, generate the key pair:

ssh-keygen -t rsa -b 2048 -N'' -C root @CLUSTER \
-f hpc-privatedatal/files/ $CLUSTER $MAI N/ r oot keys/ i d_rsa_r oot

Key type and size can be adjusted. Encode the private key with the following helper script
provided by Puppet-HPC:

puppet - hpc/ scri pt s/ encode-file.sh hpc-privatedata $CLUSTER \
hpc-privatedatal/fil es/ $CLUSTER/ $MAI N/ r oot keys/ i d_rsa_r oot

9.7. Authentication and encryption keys | 59

© Scibian Projet — v1.9, 2019-04-05 -

Do not forget to remove the generated unencrypted private key:

rm hpc-privatedatal/fil es/ $CLUSTER/ $VAI N r oot keys/ i d_rsa_r oot

Finally, publish the public key with the following parameter in the cluster specific layer of the
hiera repository $ADM N hpc- pri vat edat a/ hi er adat a/ $CLUSTER/ cl ust er . yam :

openssh: :server::root_public_key: <pubkey>

9.7.5. Root password

The root password is stored hashed in Hiera repository and encrypted with eyaml keys. Set the
root password on the temporary installation node (using passwd command) then extract the
resulting hash from / et ¢/ shadowfile. Get the whole second field:

root: <l ong password hash>: 17763: 0: 99999: 7: :
Then paste the hash into the main area Hiera layer using eyani command:
eyam edit $ADM N hpc-pri vat edat a/ hi er adat a/ $CLUSTER/ ar eas/ $MVAI N. yant
Then add this line in the editor:

profiles::cluster::root_password_hash: DEC::PKCS7[<l ong password hash>]!

The profiles::cluster::root_password_hash must be defined in all areas of the
cluster. If the cluster is composed of multiple areas, you must repeat the steps for all other
areas. It is obviously more secure if the password is different in each area, since an area will not
be able to access the hash of the root password of the nodes in other areas.

9.7.6. VIP encryption keys

The keepal i ved service relies on a shared key to authenticate the nodes sharing a VRRP
instance to manage a virtual IP address (VIP).

With Puppet-HPC, this key is common to all VIP instances of an area. Sensitive data being local
to an area, keys must be generated for each area that includes nodes sharing a VIP.

Generate a random password with the following command:

makepasswd --mninchars=16 --nmaxchars=16

60 | 9.7. Authentication and encryption keys

===== - © Scibian Projet — v1.9, 2019-04-05

Edit the area YAML file with eyamn :

eyanl edit $ADM N hpc- pri vat edat a/ hi er adat a/ $CLUSTER/ ar eas/ $AREA. yam

And save the output of the makepasswd command with the following parameter:

Vi ps_secret: DEC: : PKCS7[<passwor d>] !

This procedure must be repeated for all areas that include nodes sharing a VIP.

9.7. Authentication and encryption keys | 61

© Scibian Projet — v1.9, 2019-04-05 -

Chapter 10. Generic service nodes

10.1. Temporary installation services

The goal of this section is to configure the Temporary Installation Services on the Temporary
Installation Node. This process is done in two steps:

A First Run only using local files or external services

* A Second Run reconfiguring the Temporary Installation Node to use the services setup
during the First Run with values that will also be used to install the other generic nodes
remotely.

10.2. First Run

Consul is not available because the consul cluster needs quorum to work. Quorum can only be
achieved when more than half of the generic service nodes are configures. The DNS server is
therefore configured to only returns the temporary installation node for all requests on the
consul domain. This is done simply by adding temporarily the following parameters in file
$ADM N hpc- pri vat edat a/ hi er adat a/ $CLUSTER/ cl ust er. yani :

dns::server::virtual _relay: false

install _server_ip: '10.1.0.1' # static |IP address of the tenporary
installation node on the adm nistration
net wor k

Technically speaking, these parameters makes bind authorative on the virtual DNS zone before
Consul service discovery utility is available. The virtual zone contains all the symbolic names to
the network services (ex: http.virtual). This way, all services will be directed to the
temporary installation node with the IP address provided ini nst al | _server _i p parameter.

The first run also needs to work properly without a local DNS server and without a local
repository cache proxy. These services will be configured during this first run. Local repositories
must also be disabled during the first run.

The normal val ues nmust be searched in cluster.yam and comented out
apt:: proxy_host:
profiles::dns::client::naneservers:
- '172.16.1.1' # External DNS server
hpcconfi g: : push:: config_options:

gl obal :
cluster: "O4::cluster_nane}"
areas: ' <AREAS>'
node: ' posi x'

destination: "%hiera(' profiles::http::system:docroot')}/hpc-config"

Where <AREAS> must be replaced with the comma separated list of areas on the cluster (ex:

62 | 10.1. Temporary installation services

s © Scibian Projet — v1.9, 2019-04-05

i nfra, user ordefaul t).

The configuration will be pushed on local files while the temporary installation is used. The
settings above configures this, but the first push must use a configuration that will be created
manually in the file: / et ¢/ hpc- confi g/ push. conf.

[gl obal]

envi ronment =pr oduct i on

ver si on=| at est

ar eas=<AREAS>

desti nati on=/var/ww/ syst enf hpc-config
cl ust er =<CLUSTER NAME>

nmode=posi x

The directory where the keys were generated cannot be used as a key source for apply
because it will be overwritten during the apply. So it must be copied before doing the apply. To
deploy the configuration of the temporary installation node, run the following commands:

cd $ADM N
hpc- confi g- push
nkdir $ADM N keys
chnod 700 $ADM N keys
tar cJf $ADM N keys/ keys.tar.xz -Cletc/puppet/secure keys
hpc-config-apply --source file:///var/ww system hpc-config \
--keys-source=file://$ADM N keys \
[--area <AREA>]
--verbose
rm-rf $ADM N keys

The area parameter is required if the service node is not in default area.

If the run returned no error, there is some checks to do before proceeding. In the following
commands IP1 is the IP address of the current node. VIP[1-4] are the IP addresses of the VIP
for the service nodes.

You should check the following commands return no errors:

wget -O /dev/null http://<lIP1>: 3139/ hpc-config
dig +short @I Pl apt.service.virtua

| P1

dig +short @/ P2 apt.service.virtua

| P1

dig +short @I P3 apt.service.virtua

| P1

dig +short @I P4 apt.service.virtua
| P1

With these commands we are now sure that:

e The Apache System service is responding properly

e The DNS service on the current node is working and always return the
install _server _ip forall the . vi rt ual requests

10.2. First Run | 63

© Scibian Projet — v1.9, 2019-04-05 -

e The virtual IP addresses are up and all responding on the current service node.

10.3. Second Run

The goal of this run is to switch hpc- confi g- appl y to download files through apache and not
just get them locally. We also change the local DNS client configuration to use the newly
configured local DNS server.

To change the hpc- confi g- appl y source, do these changes in cluster.yaml:

hpcconfi g:: apply::config_options
DEFAULT:
sour ce:
val ue: "http://web-
system service.virtual : % hiera(' profiles::http::system:port')}/hpc-config"
keys_source
val ue
"http://secret.service. % hiera('virtual _domain')}:%hiera('secret_port')}/%::area}"

To switch to the local DNS server, remove the profiles::dns::client::nameservers
added for the first run and uncomment the normal one that was commented out. Also remove
the temporary apt : : pr oxy_host setting to use the configured apt-cacher-ng.

Do the actual run:
cd $ADM N && hpc-confi g- push & hpc-config-apply -v

If the two commands run without error, the initial setup succeeded.

At this stage, the temporary installation service are fully configured and available to install other
generic service nodes.

10.4. Base system installation

The other generic service nodes must now be rebooted in PXE mode to run the Debian installer
and configure the base system:

for BMC in $(nodeset -O bnt% -e service[2-4]); do
ipmtool -I lanplus -U ADMN -P ADM N -H $BMC chassi s boot dev pxe
ipmtool -1 lanplus -U ADMN -P ADM N -H $BMC power reset

done

Replace the BMC credentials with the appropriate values.

64 | 10.3. Second Run

===== - © Scibian Projet — v1.9, 2019-04-05

Scibian provides a default network installation system designed to work
in most situations. However, at this point, you may need to tune this

IMPORTANT system to make it work on your cluster and its hardware setup. Please
refer to Chapter 26, Network Boot and Installation Tuning for the
procedures.

Once the base system is fully installed, the nodes reboot and become available with SSH.
Check this with:

clush -bw fbservice[2-4] unane

At this stage, all generic services nodes are available to host the configuration environments.
The parameters of the hpc- conf i g- push utility can be updated to switch from posix to sftp. In
this mode, the utility will upload the configuration environment on all generic service nodes. Edit
$ADM N hpc- pri vat edat a/ hi er adat a/ $CLUSTER/ cl uster.yanl file to update the
hpconfi g: : push: : confi g_opti ons hash with the following changes:

hpcconfi g: : push:: config_options:

gl obal :
cluster: "O4::cluster_nane}"
- nmode: ' posi x'
i nmode: ‘sftp'
destination: "% hiera(' profiles::http::system:docroot')}/hpc-config"
ar eas: "infra, user’
+ sftp:
+ host s: ' fbservicel, fbservi ce2, fbservi ce3, f bservi ce4'

+

private_key: '/root/.ssh/id_rsa_root'

Then push and apply the configuration on the first service node:

cd $ADM N && hpc-confi g-push & hpc-config-apply -v

This will update / et ¢/ hpc- confi g/ push. conf configuration file.

Then run this command again to upload the configuration environment on all service nodes:

cd $ADM N && hpc-confi g- push

Starting from now, all generic service nodes can be used as a valid source for the configuration
environments.

10.4. Base system installation | 65

© Scibian Projet — v1.9, 2019-04-05 -

10.5. Ceph deployment

Deployment is based on a tool called ceph- depl oy. This tool performs the steps on a node to
setup a ceph component. It is only used for the initial setup of the Ceph cluster. Once the cluster
is running, the configuration is reported in the Puppet configuration in case it is re-deployed.

The reference configuration uses one disk (or hardware RAID LUN) to hold the system
(/ dev/ sda) and another to hold the Ceph OSD data and journal (/ dev/ sdb). Three or five
nodes must be chosed to setup the MON and MDS services, the remaining nodes are used only
as OSD and RadosGW nodes.

The ceph- depl oy utility generates authentication keys for Ceph. Once the cluster is running,
theses keys are manually collected and encrypted with eyam to be included in the hiera
configuration.

In the following example MONs/MDS are installed on nodes f bser vi ce[2- 4] while the node
f bservi cel only has OSD and RGW.

10.5.1. Packages installation

Install the ceph- depl oy utility and the S3 CLI client s3cnd:
apt-get install ceph-deploy s3cnd

The deployment of Ceph cluster generates a bunch of files (keyrings, configuration file, etc).
Create a temporary directory to store these files:

nkdi r ~root/ceph-depl oy & cd ~root/ceph-depl oy
Install the Ceph software stack on all nodes of the Ceph cluster:

ceph-depl oy install --no-adjust-repos $(nodeset -e @ervice)

10.5.2. Cluster bootstrap

Initialize the cluster with the first MON server of the Ceph cluster in parameter:

ceph-depl oy new \
--public-network <adm nistration network address> \
--cluster-network <adm nistration network address> \
f bservice2

ceph-depl oy non create-initia

Install admin credentials

66 | 10.5. Ceph deployment

===== - © Scibian Projet — v1.9, 2019-04-05

ceph-depl oy adnin $(nodeset -e @ervice)
Create the MON servers:

ceph-depl oy non add fbservice3
ceph-depl oy non add fbservice4

Create the OSD servers:

ceph-depl oy disk zap $(nodeset -O %:sdb -e @ervice)
ceph-depl oy osd prepare $(nodeset -O ¥%s:sdb -e @ervice)

Create the MDS servers:

ceph-depl oy nds create $(nodeset -e fbservice[2-4])
Check the Ceph cluster status:

ceph status

The command must report HEALTH_OK.

10.5.3. RadosGW

Enable RadosGW with the following command:

ceph-depl oy rgw create $(nodeset -e @ervice)

10.5.4. Libvirt RBD pool

The virtual machines will use a specific libvirt storage pool to store the disk images. This libvirt
storage pool uses ceph RBD, so a specific ceph pool is necessary. This is not handled by
ceph-depl oy:

ceph osd pool create libvirt-pool 64 64

If the cluster has five OSDs or more, the numbers of PG and PGP can be set to 128 instead of
64.

The client credentials must be manually generated:

10.5. Ceph deployment | 67

© Scibian Projet — v1.9, 2019-04-05 -

ceph auth get-or-create client.libvirt \
mon "allow r' \
osd 'all ow cl ass-read object_prefix rbd_children, allow rwx pool =libvirt-pool

10.5.5. CephFS initialization

In high-availability mode, Slurm controller requires a shared POSIX filesystem between the
primary and the backup controllers. In the Scibian HPC cluster reference architecture, CephFS
is used for this filesystem. Create this CephFS filesystem with the following commands:

ceph osd pool create cephfs_data 64 64

pool 'cephfs_data' created

ceph osd pool create cephfs_netadata 64 64
pool 'cephfs_netadata' created

ceph fs new cephfs cephfs_metadata cephfs_data
new fs with netadata pool 15 and data pool 14

If the cluster has five OSDs or more, the numbers of PGs can be set to 128 for data and
metadata pool.

10.5.6. RadosGW S3

A user must be created to access the RadosGW S3 API:
radosgw admi n user create --uid=hpc-config --display-name="HPC Config push"”

This commands gives an access_key and a secr et _key that can be used by hpc-confi g-
push(1) ors3cnd(1).

Create a temporary configuration file for s3cmd with these keys:

cat <<EOF >~/.s3cfg

[defaul t]

access_key=<ACCESS KEY>

secret _key=<SECRET_KEY>

host _bucket =% bucket) s. servi ce. vi rtual : 7480
host _base=rgw. servi ce. virtual : 7480

use_htt ps=Fal se

ECF

With the access_key and the secret _key provided by radosgw adnm n user create
command.

To work properly with Amazon S3 tools and consul DNS, RadosGW must be configured to
accept requests on rgw. servi ce. virtual and on <bucket nane>. service.virtual.
To configure this, it is necessary to re-define the default realm, region and zonegroup.

68 | 10.5. Ceph deployment

s © Scibian Projet — v1.9, 2019-04-05

The region is configured by writing a JSON region file (r gw- r egi on. j son):

{"name": "default",
"api _name": "",
"is_master": "true",
"endpoints": [],
"host names": ["rgw. service.virtual", "service.virtual"],
"master_zone": "",
"zones": [

{"name": "default",
"endpoints": [],
"log_nmeta": "fal se",
"l og_data": "fal se"}

I

"placement _targets": [

{"name": "default-placenment",
“tags": [] }],
"defaul t _placenent": "default-placenent”

Inject this region file into RadosGW configuration:

radosgw admin real mcreate --rgwreal nrdefault --default

radosgw adnin region set --infile rgwregion.json

radosgw admi n region default --rgw zonegroup=defaul t

radosgw adm n zonegroup add --rgw zonegroup=default --rgw zone=default

Define default zone and zonegroup:

radosgw admi n zone default --rgw zone=default
radosgw adni n zonegroup default --rgw zonegroup=default

Update the period:

radosgw admi n period get
radosgw admi n period update --conmt

After this step the RadosGW daemons must be restarted on every nodes:

clush -g service 'systenttl restart ceph-radosgw@ gw. ${ HOSTNAME} . ser vi ce'

Finally, create the bucket with s3cnd:

s3cmd nb --acl-public s3://s3-system
Bucket 's3://s3-system' created

10.5.7. Transfer to Hiera

When the Ceph cluster is fully initialized, its configuration must be reported to the Hiera

10.5. Ceph deployment | 69

© Scibian Projet — v1.9, 2019-04-05 -

repository. First, general topology information must be reported into the cluster specific layer of
the hiera repository $ADM N hpc- pri vat edat a/ hi er adat a/ $CLUSTER/ cl ust er. yan ,
for example:

profiles::ceph::config_options:

gl

obal :

fsid:

nmon_i ni tial _nenbers:
non_host :

aut h_cl uster_required:
aut h_service_required:
auth_client_required:

ceph: : mon_confi g:

f bservice2
f bservice3
fbservice4d

ceph: : mds_confi g:

f bservi ce2
f bservice3
f bservice4d

ceph::rgw _config:

fbservicel
f bservi ce2
f bservice3
f bservice4d

' <fsid>

' fbservice2,
'fbservice2,
' cephx'

' cephx'

' cephx'

f bservi ce3,
f bservi ce3,

f bservice4'
f bservi ce4'

In this example, the <fsi d> must be replaced with the value obtained with the following
command:

ceph fsid

Then,

all keyrings must

be reported in

the

area YAML

file $ADM N hpc-

privat edat a/ hi er adat a/ $CLUSTER/ ar eas/ $AREA. yanl whose generic service nodes
are members (ex: default or infra), using eyani

70| 10.5. Ceph deployment

o © Scibian Projet — v1.9, 2019-04-05

ceph_client_adm n_key: <eyaml encrypted key>

ceph: : keyrings:
client.adm n. keyring:
client.adm n:
key: "% hiera('ceph_client_adm n_key')}"
ceph. non. keyri ng:

"nmon. " :
key: <eyam encrypted key>
‘caps non': 'allow *'

ceph. boot st rap- nds. keyri ng:
client.bootstrap-nds:
key: <eyam encrypted key>
ceph. boot st rap- osd. keyri ng:
client.bootstrap-osd:
"key': <eyam encrypted key>
ceph. boot st rap-rgw. keyri ng:
client.bootstrap-rgw
key: <eyam encrypted key>

ceph: : osd_config:
f bservi cel:

id: ‘0

devi ce: '/dev/sdbl'

key: <eyanml encrypted key>
f bservi ce2:

id: "1

devi ce: '/dev/sdbl'

key: <eyanl encrypted key>
f bservi ce3:

id: "2

devi ce: '/dev/sdbl'

key: <eyam encrypted key>
f bservi ce4:

id: S

devi ce: '/dev/sdbl'

key: <eyanml encrypted key>

ceph: : mds_keyri ng:
f bservi ce2:
mds. f bservi ce2:
key: <eyam encrypted key>
f bservi ce3:
nds. f bservi ce3:
key: <eyam encrypted key>
f bservi ce4:
nmds. f bservi ce4:
key: <eyam encrypted key>

ceph::rgw client_keyring:
f bservicel:
client.rgw fbservicel:
key: <eyam encrypted key>
f bservi ce2:
client.rgw fbservice2:
key: <eyam encrypted key>
f bservi ce3:
client.rgw fbservice3:
key: <eyam encrypted key>
f bservi ce4:
client.rgw fbservice4:
key: <eyam encrypted key>

The bootstrap keys have been generated in the temporary Ceph deployment directory:

10.5. Ceph deployment | 71

© Scibian Projet — v1.9, 2019-04-05 -

cd ~root/ ceph-depl oy

cat ceph.client.adm n.keyring
cat ceph. non. keyri ng

cat ceph. boot strap-nds. keyri ng
cat ceph. boot strap-osd. keyri ng
cat ceph. boot strap-rgw. keyring

The OSD keys can be gathered with:

clush -bg service 'cat /var/lib/ceph/osd/ ceph-?/keyring'

The MDS keys can be gathered with:

clush -bg service 'cat /var/lib/ceph/ nmds/ ceph- ${ HOSTNAMVE} / keyri ng'

The RGW keys can be gathered with:

clush -bg service 'cat /var/lib/ceph/ radosgw ceph-rgw ${ HOSTNAMVE}/ keyri ng'

Then, add the ceph: : ser ver profile into the service role:

--- al hpc-privat edat a/ hi eradat a/ f oobar/r ol es/ servi ce. yan
+++ b/ hpc-privat edat a/ hi er adat a/ f oobar/ rol es/ servi ce. yan
@ -28,5 +28,6 @@

- profiles::bootsystem:server

- profiles::dhcp::server

- profiles::environment::limts
+ - profiles::ceph::server

profiles::network::gw connect: 'wan'

Then push the new configuration:

hpc- confi g- push

Theaoritically, at this stage, the Ceph cluster can be fully configured with Puppet. It is really
recommended to check this by re-installing one of the generic service nodes (excepting the
temporary installation node) before going further. Please mind that in case of generic service
node reinstallation after the initial configuration, bootstrap steps may be necessary:

« MDS and RadosGW, those services have no state outside of Rados, so no additional
bootstrap is necessary

» Mon Always necessary to bootstrap

¢ OSD Must be bootstraped if the OSD volume (/ dev/ sdb) is lost.

Please refer to the bootstrap procedure section for all details.

72| 10.5. Ceph deployment

°°°°° - © Scibian Projet — v1.9, 2019-04-05
Once the re-installation of a generic service node with Ceph is validated, the ceph- depl oy
temporary directory can be removed from the temporary installation node:

rm-r ~root/ceph-depl oy

10.5.8. Network restrictions

By default with Puppet-HPC, Ceph daemons socket are binded to the administration network
interface of the generic service nodes. This setup is done on purpose for security reasons and
avoid access to the Ceph cluster from outside of the administration network (typically from the
wan network, outside of the cluster).

However, this can be easily changed by overriding this parameter in the hiera repository:

profiles::ceph::listen_network: 'wan' # Make ceph listen the wan network for
connections, default is '"adm nistration

It is also possible to totally disable the network restriction settings on Ceph daemons with:

ceph::restrict_network: false

10.6. Consul deployment

All the base services are now deployed on all the generic service nodes. It is time to enable
load-balancing and high-availability with Consul service discovery tool.

Consul needs a shared secret key to encrypt communication between its distributed agents.
Generate this key with:

dd i f=/dev/urandom bs=16 count=1 2>/dev/null | base64

The output of this command must be reported in the area layer of the hiera repository
$ADM N hpc- pri vat edat a/ hi er adat a/ $CLUSTER/ ar eas/ $AREA. yanl whose generic
service nodes are members (ex: default or infra) using eyani :

consul : : key: DEC: : PKCS7[<key>]!

Add consul : : server profile to the service role:

10.6. Consul deployment | 73

© Scibian Projet — v1.9, 2019-04-05 -

--- al hpc-privat edat a/ hi eradat a/ f oobar/ r ol es/ servi ce. yant
+++ b/ hpc-privat edat a/ hi er adat a/ f oobar/ rol es/ servi ce. yani
@-29,5 +29,6 @@

- profiles::dhcp::server

- profiles::environment::limts
- profiles::ceph::server
+ - profiles::consul::server

profiles::network::gw _connect: 'wan

Then, run Puppet on all services nodes:

hpc-confi g- push && clush -bg service hpc-config-apply -v

Check that all the generic service nodes are members of the Consul cluster with this command:

clush --pick 1 -Ng service consul menbers

Node Addr ess Status Type Build Protocol DC

fbservicel 10.1.0.1:8301 alive server 0.6.4 2 f oobar
fbservice2 10.1.0.2:8301 alive server 0.6.4 2 f oobar
fbservice3d3 10.1.0.3:8301 alive server 0.6.4 2 f oobar
fbservice4 10.1.0.4:8301 alive server 0.6.4 2 f oobar

The output should report that all the services nodes are members and alive.

Remove dns::server::virtual _relay and install_server_ip parameters from
$ADM N hpc- pri vat edat a/ hi er adat a/ $CLUSTER/ cl ust er. yani :

--- al hpc-privatedat al/ hi eradat a/ f oobar/ cl ust er. yan
+++ b/ hpc- privat edat a/ hi eradat a/ f oobar/ cl ust er. yan
@ - 225, 8 +225,3 @@
Static | P addresses of the generic service nodes on the nanagenent network
' domai n- nane- servers': '10.2.0.1, 10.2.0.2, 10.2.0.3, 10.2.0.4
' broadcast ' : "o hi era(' net::nanagenent: : broadcast')}"
-dns::server::virtual _relay: false
-install_server_ip: '10.1.0.1" # static |P address of the tenporary
- # installation node on the adm nistration
- # networ k

With this new configuration, Bind DNS server relays all DNS requests on the virtual zone to
Consul DNS interface.

Push and the apply the new configuration:

hpc-confi g- push && clush -bg service hpc-config-apply -v

Finally, check DNS requests on virtual zone are managed by Consul with:

74] 10.6. Consul deployment

===== - © Scibian Projet — v1.9, 2019-04-05

di g +short web-system service. virtual
10.1.0.4
10.1.0.2
10.1.0.3

The output must report multiple generic service nodes static IP addresses in random order.

10.7. Temporary installation node sweep

Since the beginning of the installation process, the temporary installation node hosts installation
files and services required to install the other generic service nodes. Now, all the other generic
service nodes host the same files and services. Finally, the temporary installation node must be
re-installed to be strictly identical to the other generic service nodes in terms of configuration.

The disks of the temporary installation node are going to be formatted and all
data hosted of this node will be lost. Then, it is probably time to backup all the
manual modifications realized on this node and push all modifications in the
remote internal configuration Git repository.

NOTE

Reboot the node in PXE mode through its BMC:

export BMC=bncf bservicel
ipmtool -I lanplus -U ADMN -P ADM N -H $BMC chassi s boot dev pxe
ipmtool -1 lanplus -U ADMN -P ADM N -H $BMC power reset

Wait for the network installation to proceed and the node to reboot on the system freshly
installed on its disks.

10.7. Temporary installation node sweep | 75

© Scibian Projet — v1.9, 2019-04-05 -

Chapter 11. Admin node

Once the Service nodes are fully configured (Ceph, DNS, Consul, DHCP, TFTP, HTTP for
boot...), the cluster is able to reinstall any physical or virtual machine with load-balancing and
high-availability.

The first other node to install is the admin node, the central point of the HPC cluster
administration.

11.1. Base system

Add the admin role by creating the file $ADM N hpc-
privat edat a/ hi er adat a/ $CLUSTER/ r ol es/ admi n. yarm with the following content:

profiles:
conmon
- profiles::cluster::conmmon
- profiles::systend::base
- profiles::ssntp::client
- profiles::network::base
- profiles::dns::client
- profiles::access::base
- profiles::openssh::server
- profiles::openssh::client
- profiles::environment:: base
- profiles::environment::limts
- profiles::environment::service
- profiles::log::client
HW host
- profiles::hardware::ipm
- profiles::hardware::adni n_tuning
admin
- profiles::hpcconfig::push
- profiles::hpcconfig::apply
- profiles::ntp::client
- profiles::openssh::client_identities
- profiles::clush::client
- profiles::consul::client
- profiles::conman::client
- profiles::clara::base
- profiles::ceph::client
- profiles::s3::s3cnd
- profiles::jobsched::client

profiles::network::gw _connect: 'wan

profiles::environnent::service::packages
- sci bi an-hpc-adnin

The profiles listed after the admin comment carry the software required on the admin node. The
profiles::environnent::service:: packages has a specific value for this role in order
to install the admin meta-package.

Append the node definition in the mast er _net wor k hash, for example:

76| 11.1. Base system

scibion

mast er _net wor k:

(-]
f bad

© Scibian Projet — v1.9, 2019-04-05

m nl:
fgdn: "fbadm nl. % hiera(' domain')}"
net wor ks:
admi ni stration:
' DHCP_MAC : ' aa: bb: cc: dd: ee: 08'
"IP '10.1.0. 10
" devi ce': ' eno0'
"hostnane': ' fbadm nl'
managenent :
"IP '10.2.0. 10
' device': ' enol'
"hostname': ' ngt f badmi nl'
| oW at ency:
"IP '10. 4. 0. 10
"device': "i b0’
" host nanme' : ' opaf badmni nl'
bnt:
' DHCP_MAC : 'aa: bb:cc: dd: ee: 09
"IP '10.2.0. 110
"host nane': ' bntfbadm nl'
wan:
"IP '10.2.0. 10
' device': ' eno?2'
"host nane' : ' wanf badmi nl'

Optionally, adjust the node boot parameters in the boot _par ans hash, for example:

boot _par ans:
[...]
f bad

m nl:
0Ss: ' sci bi an9'
medi a: " di sk’
consol e: 'ttyS0, 115200n8'

Synchronize SSH host keys:

puppet - hpc/ scri pt s/ sync- ssh- host keys. sh hpc-pri vat edata $CLUSTER

Push and apply the new configuration:

hpc-confi g- push && clush -bg service hpc-config-apply -v

And reboot the node in PXE mode to proceed the network installation:

export BMC=bncfbadm nl
ipmtool -I lanplus -U ADMN -P ADM N -H $BMC chassi s boot dev pxe
ipmtool -1 lanplus -U ADMN -P ADM N -H $BMC power reset

Wait for the network installation to proceed. Once the installation is over, the node reboot on its
freshly installed system on its disks and it becomes available through SSH. Starting from this
point, all the following operations of the installation process are realized from this admin node.

11.1. Base system | 77

© Scibian Projet — v1.9, 2019-04-05 -

11.2. Administration environmnent

The administration environment must be re-created following the same instructions given in the
temporary installation node administration environmnet section.

The Clara utility is available on the admin node. Its ipmi plugin can be configured with this small
snippet added with eyaml to the cluster specific layer of the hiera repository:

C ara

clara::ipm_options:
prefix: 'bnt'

cl ara:: password_opti ons:
ASUPASSWD: "% hiera('cluster_decrypt_password')}"
| MMUSER: "o hiera('ipm _user')}"
| MVPASSWORD: "% hi era("'i pm _password')}"

Then add the IPMI identifiers to the admin node area layer (ex: default or infra) of the Hiera
repository using eyam :

i pm _user: DEC. : PKCS7[<user >]!
i pm _password: DEC:: PKCS7[<passwor d>] !

Push and apply configuration on the admin node:
hpc-confi g- push && hpc-config-apply -v

Then, the clara ipmi plugin can be used as explained in its documentation (man cl ara-i pm

(1))

78 | 11.2. Administration environmnent

===== - © Scibian Projet — v1.9, 2019-04-05

Chapter 12. Service virtual machines

On Scibian HPC clusters, the additional services are hosted inside virtual machines for more
flexibility and better resources partitionning. These service virtual machines run on the generic
service nodes. On the generic services nodes, the virtual machines are managed by Libvirt
service. The ditributed instances of Libvirt are controlled centrally from the admin node with
Clara utility. The following sub-sections explain how to setup these software components.

12.1. Libvirt settings

The Libvirt service must create various virtual networks to connect the virtual machines to the
HPC cluster and a storage pool on Ceph RDB interface to store the virtual disks of the virtual
machines. These virtual resources are setup with the following configuration in the cluster
specific layer of the hiera repository:

virt_ceph_uuid: ' <uuid>'

profiles::virt::networks:
"administration':
'node' : ' bridge'

"interface': 'br0O
' managenent ' :

'nmode' : ' bridge'

"interface': 'br1'
"wan' :

"nmode' : ' bridge'

"interface': 'br2

profiles::virt::pools:
' rbd- pool ' :
"type': 'rbd'
"hosts':
- 'fbservice2'
- 'fbservice3'
- 'fbservice4'

"auth':
"type': ' ceph’
"usernane': 'libvirt'
"uuid': "O¢hiera('virt_ceph_uuid)}"

The <uui d> is an arbitrary UUID [6: Universally Unique |Dentifier, a 128-bit number used to
identify information in computer systems] to identify uniquely the secret. For example, it can be
generated with this command:

python -c "inport uuid; print uuid.uuidl()’

Add the libvirt Ceph client identifiers with the following hash into the generic service nodes area
layer (ex: default or infra) of the Hiera repository using eyan :

12.1. Libvirt settings | 79

© Scibian Projet — v1.9, 2019-04-05 -

profiles::virt::secrets:
"client.libvirt':
"type': 'ceph’
"uuid : "%hiera('virt_ceph_uuid')}"
"val ue': DEC: : PKCS7[<key>]!

The <key> is given by the following command:
ceph auth get-key client.libvirt

The profile profil es::virt::host mustbe added to service nodes role definition.

Push and apply configuration on the generic service nodes:

hpc-confi g-push && clush -bg service hpc-config-apply

12.2. Clara configuration

Clara has dedicated configuration for its virt plugin. This configuration is set with the following
two hashes in the cluster specific layer of the hiera repository:

clara::virt_options:
' nodegroup: defaul t':

"default': "true'

' nodes' : 'fbservicel, fbservice2, fbservice3, fbservi ce4'
" pool :defaul t':

"defaul t': 'fal se'
' pool : rbd- pool ' :

"defaul t': "true'

"vol _pattern': "{vm nane}_{vol _role}'
"tenplate: defaul t':

"defaul t': "true'

xm "domai n_def aul t _tenpl ate. xm'

"vol _roles': ' systeni

"vol _role_systemcapacity': '60000000000

' net wor ks' : "admi ni stration'

clara::virt_tpl_hpc_files:
"/etc/claraltenpl ates/ vm domai n_default _tenplate. xm ':
source: "% ::private_files_dir}/virt/domain_default_tenplate. xm"

The clara::virt_options hash notably specifies the list of generic services nodes that
hosts the virtual machines and the domain templates and parameters associated to each
service virtual machine. For the moment, only the default domain template and parameters are
set. The second hash clara::virt_tpl_hpc_fil es defines the templates of Libvirt XML
domains definitions. In this example, there is one default domain XML template for all virtual
machines which should be fine for most Scibian HPC clusters.

The domain XML template must be located in $ADM N hpc-
privatedatal/fil es/ $CLUSTER $AREA/ virt/ domai n_defaul t _tenpl ate. xnl , where

80 | 12.2. Clara configuration

s © Scibian Projet — v1.9, 2019-04-05

$AREA is the area of the generic service nodes. Here is a full example of this file:

<domai n type='"kvnmi >
<nanme>{{ name }}</name>
<menory unit="Ki B >{{ menory_kib }}</nmenory>
<current Menory unit="Ki B'>{{ nenory_kib }}</current Menory>
<vcpu placenment="static'>{{ core_count }}</vcpu>
<resour ce>
<partition>/machi ne</partition>
</resource>
<0s>
<type arch='x86_64" machi ne=' pc-i 440f x-2.1' >hvnx/type>
<boot nenu enabl e=' yes' />
<boot dev='hd'/>
<boot dev='network'/>
</ os>
<f eat ur es>
<acpi / >
<api ¢/ >
<pael/ >
</features>
<cpu node=' host-nodel ' match="exact'> </cpu>
<cl ock of fset="utc'>
<tinmer nane='rtc' tickpolicy='catchup'/>
<timer name='pit' tickpolicy="delay'/>
<tinmer nane='hpet' present='no'/>
</ cl ock>
<on_power of f >dest r oy</ on_power of f >
<on_reboot >restart </ on_reboot >
<on_crash>restart</on_crash>
<prn>
<suspend-t o- rem enabl ed=' no' / >
<suspend-to-di sk enabl ed='no' />
</ pn>
<devi ces>
<emul at or >/ usr/ bi n/ kvn</ erul at or >
<di sk type='network' device="disk'>
<source protocol = rbd" name='{{ vol unes.systempath }}'>
<host nane='<ip_non_server_1>" />
<host nane='<i p_non_server_2>" [>
<host nane='<ip_non_server_3>" />

</ sour ce>
<auth username='libvirt'>

<secret type='ceph' uuid="<uuid>'/>
</ aut h>

<target dev='vda' bus='virtio' />
<al i as name='virtio-disk0' />
</ di sk>
<di sk type='bl ock' device="cdrom >
<driver nane='qgenu' type='raw />
<backi ngSt or e/ >
<target dev='hda' bus='ide'/>
<readonl y/ >
<alias nane='ide0-0-0'/>
</ di sk>
<control l er type='"usb' index="0" nodel ="ich9-ehcil' >
<al i as nane='usb0' />
</controller>
<controller type='usb' index='0" nodel ='ich9-uhcil' >
<al i as nane='usb0'/>
<master startport='"0'/>
</controller>
<control |l er type='"usb' index="0" nodel ='ich9-uhci2' >
<al i as nane='usb0' />
<master startport='2'/>

12.2. Clara configuration | 81

© Scibian Projet — v1.9, 2019-04-05

</controller>
<controller type="usb' index='0" nodel ='ich9-uhci3' >
<al i as nane='usb0' />
<master startport='4'/>
</control |l er>
<control ler type='pci' index="0" nodel = pci-root'>
<alias nane='pci.0' />
</control |l er>
<controller type="ide' index='0">
<alias nane='ide0' />
</control |l er>
<controller type='virtio-serial' index='0">
<alias name='virtio-serial0'/>
</controller>
{%for network_name, network in networks.iteritenms() %
<interface type='network'>
<mac address='{{ network.mac_address }}'/>
<source network='{{ network_nane }}'/>
<nmodel type='virtio'/>
</interface>
{% endf or %
SIS
<serial type='tcp' >
<source node='hind" host="{{ serial _tcp_host }}' service="{{ serial_tcp_port
>
<protocol type='telnet'/>
<target port='"0'/>
<alias name='serial0' />
</serial >
==
<serial type='pty'>
<target port='0'/>
<alias nane='serial 0'/>
</serial >
<channel type='spicevnt' >
<target type='virtio' nanme='comredhat.spice.0" />
</ channel >
<i nput type='tablet' bus='usb'>
<alias nane='input0'/>
</i nput >
<i nput type='nouse' bus='ps2'/>
<i nput type='keyboard' bus='ps2'/>
<graphi cs type='spice' port='5901' autoport='"yes' |isten='127.0.0.1">
<listen type='address' address='127.0.0.1'/>
</ graphi cs>

<sound nodel ='ich6' >
<al i as nane=' sound0' />

</ sound>

<vi deo>

<nmodel type='qgxl' ranr' 65536' vranr' 65536' heads='1'/>
<al i as nane='vi deo0' />

</ vi deo>

<redi rdev bus='usb' type='spicevnt' >
<alias name='redir0'/>

</redirdev>

<redi rdev bus='usb' type='spicevnt' >
<alias nane="redirl' />

</redirdev>

<redi rdev bus='usb' type='spicevnt' >
<alias name='redir2'/>

</redirdev>

<redi rdev bus='usb' type='spicevnt' >
<alias nane="redir3' />

</redirdev>

<menbal | oon nodel =" virtio' >
<al i as nanme='bal | oon0' />

</ menbal | oon>

82 | 12.2. Clara configuration

===== - © Scibian Projet — v1.9, 2019-04-05

<rng nodel =" virtio' >
<backend nodel =' random >/ dev/ r andonx/ backend>
<al i as nane='rng0'/>
</rng>
</ devi ces>
</ domai n>

In this example, the following values must be replaced:
e <i p_non_server_*> are the static IP addresses of the Ceph MON servers on the
administration network.

e <uui d> is the UUID for Libvirt Ceph RBD secret generated in the previous sub-section.

Deploy these new settings by pushing and applying the configuration on the admin node:

hpc- confi g- push && hpc-config-apply -v

12.3. Virtual machine definitions

Now that Libvirt and Clara virt plugin are properly setup, the various service virtual machines
can be defined. The steps to define the service virtual machines are mostly generic and
common to all of them. As an example for this documentation, the two service virtual machines
f bdoe[1- 2] will be defined.

Optionally, define specific boot parans for the virtual machines in $ADM N hpc-
privat edat a/ hi er adat a/ $CLUSTER/ cl ust er. yanl if the defaults parameters are not
appropriate:

boot _par ans:
[...]
f bdoe[1- 2] :

di sk: " di sk’
i pxebin: 'ipxe_noserial.bin'

Also, in the same file, an additional domain template and parameters association can be
appended to the cl ara: : virt _opti ons for these new virtual machines, if the default domain
parameters are not appropriate:

clara::virt_options
[...]
"tenpl at e: proxy'

'vm nanes': ' f bdoe[1- 2]

"xm "domai n_defaul t _tenplate. xm"'
"vol _roles': ' systeni

"vol _rol e_system capacity': '60000000000

' net wor ks' : "admi ni stration, wan
'core_count"': '16

"menory_kib': '16777216

12.3. Virtual machine definitions | 83

© Scibian Projet — v1.9, 2019-04-05 -

In this example, the following settings are overriden from the defaults:

« the virtual block storage device has a size of 60GB,
» 2 network devices attached to the administration and wan networks,
* 16 virtual CPU cores,

* 16GB of RAM.

Then, the new role doe must be defined in file $ADM N hpc-
privat edat a/ hi er adat a/ $CLUSTER/ r ol es/ doe. yanl with all the appropriate profiles.

Push and apply configuration on admin node:

hpc- confi g- push && hpc-config-apply -v

Extract MAC address of the virtual machine on the administration network:

clara virt getmacs <VM>

Then add the network settings of the virtual machines in the mast er _net wor k hash with their
MAC addresses:

mast er _net wor k:

f bdoel:
fqdn: "fbdoel. % hiera(' domain')}"
net wor ks:

admi ni stration:
' DHCP_MAC : ' aa: bb: cc: dd: ee: Oa'

"IP '10.1.0. 11
' devi ce': ' eno0'
"hostnane': ' fbdoel'
wan:
1P '10.3.0.11'
" device': ' enol'
" host nane' : ' wanf bdoel'
f bdoe2:
fqdn: "fbdoe2. % hiera(' domain')}"
net wor ks:

admi ni stration:
' DHCP_MAC : ' aa: bb: cc: dd: ee: Ob'

"IP '10.1.0.12

' devi ce': ' eno0'

"hostnane': ' fbdoe2'
wan:

"IP '10.3.0.12'

" device': ' enol'

" host nane' : ' wanf bdoe2'

Eventually, virtual IP addresses can also be defined for the virtual machines in the vi ps hash of
the same file.

Generate the SSH host keys in synchronization with the mast er _net wor k:

84 | 12.3. Virtual machine definitions

===== - © Scibian Projet — v1.9, 2019-04-05

puppet - hpc/ scri pt s/ sync- ssh- host keys. sh hpc-pri vat edata $CLUSTER

Push and apply the new configuration on the generic service nodes:
hpc-confi g- push && clush -bg service hpc-config-apply -v

Define the new virtual machines with Clara on the generic service node of your choice, for
example f bser vi cel:

clara virt define fbdoe[1-2] --host=fbservicel

The choice of the generic service node is not critical as the service virtual
NOTE machines can be migrated from one generic service node to another at any
time.

Then start the virtual machine by wiping its virtual block storage devices and boot in PXE mode:

clara virt start fbdoe[1-2] --w pe

Eventually, watch the serial console with:

ssh -t fbservicel -- virsh consol e fbdoel

12.4. Required virtual machines

You are free to define the service virtual machines you want on Scibian HPC clusters. The
service virtual machines can run any software services you would like. However, some specific
generic virtual machines are required in the reference architecture to run some mandatory
additional services.

The required service virtual machines are:

e two (or more) proxy virtual machines with the aut h: : repl i ca profile for managing the
LDAP directory replica. The installation of the LDAP directory replica of the proxy nodes is
documented in Section 13.1, “Directory replica” of the LDAP Authentication section of this
installation procedure.

e two batch virtual machines with the j obsched: : server and db:: server profiles for
Slurm controller, SlurmDBD accounting service and MariaDB galera database. The
installation of the Slurm server-side components on the batch nodes is documented in
Chapter 14, Slurm.

* two p2p virtual machines with the p2p: : seeder, p2p: : tracker and http::di skl ess

12.4. Required virtual machines | 85

© Scibian Projet — v1.9, 2019-04-05 -

profiles for serving files to boot diskless nodes with Bittorrent. The installation of the p2p
nodes is pretty straightforward as long as the required profiles are enabled. The creation of
the diskless environment is documented in Section 15.1, “Diskless image generation” of the
Frontend and compute nodes section of the installation procedure.

86 | 12.4. Required virtual machines

===== - © Scibian Projet — v1.9, 2019-04-05

Chapter 13. LDAP Authentication

13.1. Directory replica

User authentication on Scibian HPC clusters is based on LDAP directory using Idaps protocol
(LDAP over SSL/TLS). This protocol requires the LDAP replica to have valid SSL certificate and
asymmetric keys.

For production use, it is recommended to obtain a certificate signed by a valid PKI CA [7: Public
Key Infrastructure Certicate of Authority, an entity that issues digital certificates], either a public
CA on the Internet or a CA internal to your organization. Otherwise, it is possible to use self-
signed certificates.

Copy the private key and the certificate under the following paths:

« certificate: $ADM N hpc-
privatedatal/fil es/ $CLUSTER/ cl ust er/ aut h/ $CLUSTER | dap. crt

* private key: $ADM N hpc-
privatedatal/fil es/ $CLUSTER $AREA/ aut h/ $CLUSTER | dap. key

Where $AREA is the area of the LDAP replica nodes (ex: default or infra).

Encrypt these files with clara enc plugin:

clara enc $ADM N hpc- privat edata/fil es/ $CLUSTER cl ust er/ aut h/ $CLUSTER | dap. crt
clara enc $ADM N hpc- privat edata/fil es/ $CLUSTER/ $AREA/ aut h/ $CLUSTER | dap. key

Remove the unencrypted files:

rm $ADM N hpc- pri vat edat a/ fi | es/ $CLUSTER/ cl ust er/ aut h/ $CLUSTER | dap. crt
rm $ADM N hpc- pri vat edat a/ fi | es/ $CLUSTER/ $AREA/ aut h/ $CLUSTER | dap. key

Then, append the aut h: : repl i ca profile and set certificate owner to openl dap in the proxy
role:

13.1. Directory replica | 87

© Scibian Projet — v1.9, 2019-04-05 -

--- al hieradatalfoobar/rol es/ proxy. yamn
+++ b/ hi er adat a/ f oobar/r ol es/ proxy. yamn
@-14,7 +14,7 @ profiles

Proxy

- profiles::ntp::client

- profiles::network::wan_nat
+ - profiles::auth::replica

- profiles::postfix::relay

- profiles::ha::base

- profiles::hardware::adm n_tuning
@ -30,3 +30,24 @profiles:

profiles::network::gw connect: 'wan'
shorewal | : :i p_forwarding: true
+

+certificates::certificates_owner: 'openldap

Push and apply the configuration on the proxy nodes:
hpc-confi g-push && clush -bg proxy hpc-config-apply -v

Finally, follow the steps documented in Chapter 17, LDAP bootstrap.

13.2. Clients setup

Once the LDAP replica are bootstrapped and operational, it is possible to setup NSS LDAP
backend and PAM LDAP authentication on the nodes.

On Scibian HPC clusters, NSS LDAP backend and PAM authentication over LDAP are both
setup with the same aut h: : cl i ent profile. This profile must be used in combination with the
access: : base profile. This profile controls the remote access rules to the nodes. By default,
the profile prevents remote access to the nodes with LDAP accounts. The access rules must
explicitely whitelist users and/or administrators to allow remote access with SSH.

There are two main access whitelist parameters:

e« profiles::access: base_options is the list of permanent access rules.

e profiles::access: production_options is the list of access rules disabled in
maintenance mode.

The administrators related access rules must be listed in the base_opt i ons while the users
related access rules must only be present in the producti on_opti ons list. This way, only
administrators can access the HPC cluster in maintenance mode. For example:

profil es::access:: base_options:
- "+ : (admns) : ALL"
profiles::access:: production_options:
- "+ : (grpusersl) : ALL"
- "+ ! (grpusers2) : ALL"

88 | 13.2. Clients setup

===== - © Scibian Projet — v1.9, 2019-04-05

These parameters must be set in the roles specific layer of the hiera repository as access rules
depends on the role of the nodes. For example, users may access the frontend nodes but not
the admin node.

Additionally, it is also possible to setup sudo rules with the sudo: : base profile and the
sudo: : sudo_confi g_opt s list. This parameter is basically a list of sudo rules. For example,
to allow the group of administrator to sudo any command on the admin node, add the following
excerpt to file $ADM N hpc- pri vat edat a/ hi er adat a/ $CLUSTER/ r ol es/ admi n. yamn :

profiles::sudo::sudo_config_opts
- "% dmns ALL = (ALL) ALL"

By default, the PAM and NSS LDAP backend connect to the HPC cluster internal LDAP replica.
This replica is hosted by service virtual machine. In order to make LDAP authentication on the
admin nodes and generic service nodes possible for the administrators when the virtual
machines are offline (typically during maintenances), it is possible to add the following
parameter in the associated roles:

profiles::auth::client::external _| dap: true

This way, the nodes will connect to the organization reference LDAP directory instead of the
internal LDAP replica.

Push and apply the configuration on all the affected nodes with:

hpc-confi g- push && clush -bg all hpc-config-apply

13.2. Clients setup | 89

© Scibian Projet — v1.9, 2019-04-05 -

Chapter 14. Slurm

Slurm workload manager is distributed among the HPC cluster nodes with multiple daemons
and clients software. On Scibian HPC clusters, the server part of Slurm, ie. the controller and
the accounting services, run in high-availability mode on the batch nodes. These components
are managed by the j obsched: : server. The batch nodes also need the db: : server, and
the ceph: :client or nfs::nmount that respectively setup the MariaDB galera RDBMS [8:
Relational Database Management System]|, and CephFS or NFS filesystem client.

14.1. Base Configuration

Slurm communications between nodes are secured using Munge which is based on a secret
shared key. Generate this munge key with the following command:

nkdir -p $ADM N hpc- privatedata/fil es/ $CLUSTER/ cl ust er/ nmunge
dd if=/dev/urandom bs=1 count=1024 > \
$ADM N hpc-privat edat a/ fil es/ $CLUSTER/ cl ust er/ nunge/ nunge. key

Encrypt the key using Clara:

clara enc encode $ADM N hpc-privatedata/fil es/ $CLUSTER/ cl ust er/ munge/ nunge. key

Remove the unencrypted key:

rm $ADM N hpc- pri vat edat a/ fi |l es/ $CLUSTER/ cl ust er/ nunge/ nunge. key

Setup the nodes and partitions managed by Slurm in the sl urm : partitions_options
hash in the cluster specific layer of the Hiera repository. For example:

slurm:partitions_options:

- ' NodeNane=f bcn[01- 04] Socket s=2 Cor esPer Socket =14 Real Menor y=64000
St at e=UNKNOWN

- ' NodeNane=f bgn01 Sockets=2 CoresPer Socket =4 Real Menor y=64000 G- es=gpu: k80: 2
St at e=UNKNOWN

- "PartitionName=cn Nodes=fbcn[01-04] Defaul t=YES MaxTi ne=I NFI Nl TE St at e=UP'

- 'PartitionName=gn Nodes=f bgn01 MaxTi me=I NFI NI TE St at e=UP'

- 'PartitionNanme=all Nodes=fbcn[01-04], fbgn0l1 MaxTi me=I NFI NI TE St at e=UP'

Please refer to Slurm documentation for more details about these settings.

In the same, setup the LDAP/SIlurmDBD users synchronization utility, for example:

90 | 14.1. Base Configuration

https://slurm.schedmd.com/

s © Scibian Projet — v1.9, 2019-04-05

profiles::jobsched::server::sync_options:

mai n:
cluster: "9%::cluster_nane}"
org: "% hiera('org)}"
policy: 'global_account'

gl obal _account:
nane: 'users'
desc: 'Main users account'

Please refer to the example configuration file for more detalils.

14.2. Shared State Location

Still in the cluster specific layer of the Hiera repository, setup the shared storage directory.

14.2.1. CephFS

If you are using CephFS, configure the client mount with the following excerpt:

profiles::jobsched::server::ceph::keys:
client:
key: "9 hiera(' ceph_client_adm n_key')}"

profiles::jobsched::server::ceph::nmounts:
slurnct! d:
servers: # |list of Ceph MON servers
- fbservice2
- fbservice3
- fbservice4d

devi ce: "/slurnctl d
mount point: "%hiera('slurmstate _save loc')}"
user: "admin'
key: "client'
node: " kernel'
14.2.2. NFS

If you are using an NFS HA Server:

profiles::jobsched::server::ceph::enabled: false

profiles::jobsched::slurmconfig_options:

(-]

St at eSavelocat i on: '/ admi n/restricted/ backup/ sl urm st ate_save'

For NFS HA, at the role level, configure the NFS mount:

14.2. Shared State Location | 91

https://github.com/edf-hpc/slurm-llnl-misc-plugins/blob/master/sync-accounts/sync-accounts.conf

© Scibian Projet — v1.9, 2019-04-05 -

profiles:

(-]

- profiles::nfs::nounts

profiles::nfs::to_nount:

hone:
server: ' f bnas’
exportdir: '/srv/admn'
nmount poi nt: ' /admin'
options: ' bg, rw, hard, ver s=4'

14.3. Miscellaneous Tuning

Eventually, it is possible to tune Slurm, GRES, SlurmDBD, job submit LUA script with the
following parameters:

profiles::jobsched::slurmconfig _options:

Pri vat eDat a: 'j obs, reservations, usage'
Account i ngSt or ageEnf orce: 'associations,limts,qos'
G esTypes: ' gpu’

Sl ur mCt | dDebug: 'ver bose'

PriorityFl ags: ' FAl R_TREE'

slurm:gres_options:
- ' NodeNane=f bgn01 Nane=gpu Type=k80 Fil e=/dev/ nvi di a0’

profiles::jobsched::server::slurnmdbd_config_options:
PrivateData: 'accounts,jobs,reservations, usage, users'

slurm:ctld::submt_lua_options:
CORES_PER _NCDE: ' 28'

14.4. MariaDB security hardening

14.4.1. Settings

By default, the MariaDB server is setup with parameters to harden its security. Notably, the
following settings are deployed by default:

e max_user _connecti ons to 100 (default is 0 ie. unlimited), in order to prevent one user
from grabbing all 151 available max_connect i ons (default MariaDB value).

e secure_file_priv is set to an empty value in order to disable potentially dangerous
command LOAD DATA | NFI LE.

« the client histfile ~/ . nysql _hi st ory is disabled by default.

Obviously, these settings can be altered in the hiera repository. Here is an example yaml excerpt
to change these default values:

92 | 14.3. Miscellaneous Tuning

===== - © Scibian Projet — v1.9, 2019-04-05

mari adb: : di sabl e_hi stfile: fal se
mar i adb: : gal era_conf _opti ons:

nmysql d:
max_user _connections: '0" # unlimted
secure_file_priv: "

14.4.2. TLS/SSL connections

It is also possible to setup SSL/TLS on MariaDB. First, create the ssl directory if missing in the
files hierarchy of the cluster:

nkdir -p $ADM N hpc-privatedata/fil es/ $CLUSTER/ $AREA/ ssl

Where $AREA is the area of the MariaDB servers.
Generate and copy host SSL certificate and encryption key to the following paths respectively:

o $ADM N hpc-privatedata/fil es/ $CLUSTER/ $AREA/ ssl / ssl -cert - bat ch. pem
o $ADM N hpc-privatedata/fil es/ $CLUSTER/ $AREA/ ssl / ssl - cert - bat ch. key

Encrypt the key using Clara and remove unencrypted file:

clara enc encode $ADM N hpc-privatedatal/fil es/ $CLUSTER/ $AREA/ ssl /ssl -cert - bat ch. key
rm $ADM N hpc- pri vat edat a/ fi | es/ $CLUSTER/ $AREA/ ssl / ssl - cert - bat ch. key

Finally, set the following mar i adb module parameter to t r ue either at the organization layer or
the cluster layer of the Hiera repository, according to your need:

mar i adb: : enabl e_ssl: true

14.5. Bootstrap

Some software components need to be manually bootstrapped on the batch nodes before being
started:

* MariaDB database

¢ SlurmDBD service

The shared storage can be on CephFS or on NFS HA, the suitable bootstrap procedure must be
performed:

e CephFsS filesystem
* NFS HA filesystem

14.5. Bootstrap | 93

© Scibian Projet — v1.9, 2019-04-05 -

Please refer to the Bootstrap procedure chapter of this document for all details.

14.6. Configuration deployment

Once the configuration is set in the Hiera repository, push and apply the configuration on the
admin and batch nodes:

hpc-confi g- push && clush -bg adnin, batch hpc-config-apply -v

Check Slurm is available by running the si nf o command on the admin node. If the command
report the nodes and partitions state without error, Slurm is properly running.

94 | 14.6. Configuration deployment

===== - © Scibian Projet — v1.9, 2019-04-05

Chapter 15. Frontend and compute nodes

On Scibian HPC clusters, the frontend and compute nodes download at boot time a system
image in deployed in RAM which notably gives possibility to have diskless nodes. For more
details about this technique, please refer to Section 5.1.3, “Diskless boot” in the Advanced
Topics section of the Architecture chapter of this document. The diskless image must be
generated with Clara images plugin on the admin node before booting the frontend and the
compute nodes. These steps are explained in the following sub-sections.

15.1. Diskless image generation

The diskless image is generated by the Clara images plugin. This plugin need some
configuration in the cluster specific layer of the Hiera repository. Here is an example of such
configuration:

15.1. Diskless image generation | 95

© Scibian Projet — v1.9, 2019-04-05

clara_images_target_dir: "%hiera('adm n_dir')}/scibian9"

cl ara: : conmon_opti ons:
al | owed_di stri butions:
val ue: 'sci bian9'

clara::inmages_options:

extra_packages_i mage: "sci bi an-archive-keyring, hpc-confi g-apply, sci bi an-hpc-
commons”

packages_i nitrd: "sci bi an-di skl ess-initranfs-config"

etc_hosts:
"10. 1. 0.101: vi pf bservi cel, 10. 1. 0. 101: apt . servi ce. vi rtual , 10. 1. 0. 10: f badm n1"

clara::config_options:
i mages- sci bi an9:

debi andi st : "stretch’'
debnirror:

"http://%hiera(' debian_mrror_server')}/%hiera('debian_mrror_dir')}"
kver: "4.9.0-4-and64"
i st_repos: "deb [arch=and64, i 386]

http://%hiera(' debian_mirror_server')}/"
trg_dir: "% hiera('clara_imges_target_dir')}"
trg_ing:

"o hiera('clara_i mages_target _dir')}/scibian9. squashfs"
preseed_file:

"o hiera('clara_imges_config_dir')}/scibian9/preseed"
package_fil e:

"% hiera('clara_images_config_dir')}/scibian9/packages"
scri pt_post _image_creation:

"% hiera('clara_imges_config_dir')}/scibian9/post.sh"
list files_to_install:

"% hiera('clara_i mges_config dir')}/scibian9/filelist"
dir_files_to_install:

"% hiera('clara_imges_config_dir')}/scibian9/files_dir"
foreign_archs: 'i 386"

clara::live_dirs
"o hiera('clara_imges_config dir')}":
ensure: directory
"% hiera('clara_imges_config_dir')}/scibian9"
ensure: directory
"% hiera('clara_imges_config_dir')}/scibian9/files_dir"
ensure: directory

clara::live_files:
"o hiera('clara_imges_config_dir')}/scibian9/post.sh":
source: "% ::private files_dir}/boot/live/scibian9/post.sh"
node: ' 755'
"o hiera('clara_i mages_config_dir')}/scibian9/preseed":
source: "% ::private files_dir}/boot/live/scibian9/preseed"
"o hiera('clara_imges_config_dir')}/scibian9/filelist":
source: "% ::private_files_dir}/boot/livel/scibian9/filelist"
"o hiera('clara_i mages_config dir')}/scibian9/files dir/resolv.conf":
source: "% ::private files_dir}/boot/livel/scibian9/files_dir/resolv.conf"
"o hiera('clara_imges_config_ dir')}/scibian9/files_dir/no-cache":
source: "% ::private_files_dir}/boot/livel/scibian9/files_dir/no-cache"
"o hiera('clara_imges_config_dir')}/scibian9/files_dir/no-reconmends":
source: "% ::private files_dir}/boot/live/scibian9/files_dir/no-recommends"
"% hiera('clara_imges_config_dir')}/scibian9/files_dir/interfaces":
source: "% ::private files_dir}/boot/livel/scibian9/files _dir/interfaces"
"o¢ hiera('clara_i mages_config dir')}/scibian9/files_dir/proxy":
source: "% ::private files_dir}/boot/livel/scibian9/files_dir/proxy"
"o hiera('clara_imges_config_dir')}/scibian9/files_dir/nk_ipm _dev.sh":
source: "%::private_files_dir}/boot/live/scibian9/files_dir/nk_ipnm _dev.sh"
"o hiera('clara_images_config dir')}/scibian9/files_dir/hpc-config.conf":
source: "% ::private files_dir}/boot/livel/scibian9/files_dir/hpc-config.conf"

96 | 15.1. Diskless image generation

s © Scibian Projet — v1.9, 2019-04-05

The cl ara::live_fil es parameter contains a list of files deployed under the configuration
directory of Clara. Their files are:

« $SADM N hpc-
privatedatal/fil es/ $CLUSTER/ $AREA/ boot /1 i ve/ sci bi an9/ post. sh (where
$AREA is the area of the admin node) is a post-generation script run by Clara inside the
image environment:

#!/ bi n/ bash -e

Fi x Tinezone data
echo GMI > /etc/timezone
dpkg-reconfigure -f noninteractive tzdata

Fi x host nane
echo "l ocal host" > /etc/host nane

Create needed directory for Puppet
nkdir -p /var/lib/puppet/facts.d/

Enabl e setuid on /bin/ping to I et users run it because AUFS does not support
xattr and therefore capabilities.
chnod 4755 / bi n/ pi ng

This script can notably be used to customize the image or set files and directories that are
required very early in the live boot process before Puppet run.

o $ADM N hpc-
privatedatal/fil es/$CLUSTER/ $AREA boot /1 i ve/ sci bi an9/ preseed contains
the answers to the Debconf packages configuration questions:

consol e-conmbn consol e-dat a/ keymap/ ful | sel ect en

consol e-conmon consol e-dat a/ keymap/ pol i cy sel ect Sel ect keymap fromfull |ist
consol e-dat a consol e-dat a/ keymap/full sel ect en
consol e-dat a consol e-dat a/ keymap/ policy select Select keymap fromfull |ist

consol e-set up consol e-set up/ charmap47 sel ect UTF-8

| ocal es | ocal es/ default_environnent | ocal e sel ect en_US. UTF-8

| ocal es | ocal es/| ocal es_to_be _generated nultisel ect en_US. UTF-8 UTF-8, en_US | SO
8859-1

keyboar d- confi gurati on keyboard-configuration/layout select English
keyboar d- confi gurati on keyboard-configuration/variant select English
keyboar d- confi gurati on keyboard-configurati on/ unsupported_| ayout bool ean true
keyboar d- confi gurati on keyboard-configuration/ nodel select International (wth dead
keys)

keyboar d- confi gurati on keyboard-configuration/layoutcode string int
keyboar d- confi gurati on keyboard-configuration/ctrl_alt_bksp bool ean fal se
keyboar d- confi gurati on keyboard-configuration/variantcode string oss
keyboar d- confi gurati on keyboard-confi gurati on/ nodel code string pcl05

postfix postfix/main_nailer_type select No configuration

tzdata tzdatal/ Areas sel ect Europe

tzdat a tzdat a/ Zones/ Eur ope sel ect London

I'i bpamruntine |ibpamruntine/conflicts error

mdadm ndadm st art _daenon bool ean fal se

postfix postfix/mailname string | ocal domain

o $ADM N hpc-

15.1. Diskless image generation | 97

© Scibian Projet — v1.9, 2019-04-05 -

privatedatal/fil es/$CLUSTER $AREA/ boot/1ivel/scibian9/filelist specifies
the list of files to copy inside the generated image:

hpc- confi g. conf etc/ 0644
resol v. conf etc/ 0644

pr oxy etc/apt/apt.conf.d/ 0644

no- cache etc/apt/apt.conf.d/ 0644

no- r ecomrends etc/apt/apt.conf.d/ 0644
interfaces et c/ net wor k/ 0644
nk_i pm _dev. sh usr/ | ocal / shin/ 0755

All the files under the fi | es_di r directory are copied without modification into the image. The
required files are:

« $ADM N hpc-
privatedatal/fil es/ $CLUSTER/ $AREA/ boot /| ive/scibian9/files_dir/resolv

. conf is the configuration file for DNS solvers with the virtual IP addresses of the cluster’s
internal DNS servers:

domai n foobar. hpc. exanpl e. org

search foorbar. hpc. exanpl e. org hpc. exanpl e. org
naneserver 10.1.0.101

nameserver 10.1.0.102

naneserver 10.1.0.103

naneserver 10.1.0.104

« $ADM N hpc-
privatedatal/fil es/$CLUSTER/ $AREA/ boot/1ive/scibian9/files_dir/no-
cache disables packages local caching in APT package manager:

Dir:: Cache: : srcpkgcache "*"
Di r:: Cache: : pkgcache ""

o $ADM N hpc-
privatedata/fil es/ $CLUSTER/ $AREA/ boot/ | i ve/ sci bian9/files_dir/no-

recomends disables recommends soft-dependencies installation in APT package
manager:

APT: : I nstal | - Recormends " 0"

« $ADM N hpc-
privatedatal/fil es/ $CLUSTER/ $AREA/ boot/1ive/scibian9/files_dir/interf
aces is a default network interfaces configuration file to enable DHCP on eno0 interface:

auto |l o
iface o inet |oopback

aut o eno0
iface eno0O inet dhcp

98 | 15.1. Diskless image generation

===== - © Scibian Projet — v1.9, 2019-04-05

« $ADM N hpc-
privatedatal/fil es/ $CLUSTER $AREA/ boot/1ivel/ scibian9/files_dir/ proxy
setup cluster’s internal packages proxy in APT configuration:

Acquire::http::Proxy "http://apt.service.virtual:3142";

o $ADM N hpc-
privatedata/fil es/ $CLUSTER $AREA/ boot /| i ve/ sci bian9/files_dir/nk_i pm
i _dev.sh is a workaround script to create the BMC devices inodes the / dev virtual
filesystem very early in the diskless nodes boot process:

#!/ bi n/ sh
DEVI CE=' / dev/ i pm O

if [-e ${DEVICE}]

t hen
exit O

el se
MAJOR=$(grep ipmidev /proc/devices | awk '{print $1}")
nknod --nmde=0600 ${DEVICE} ¢ ${MAJOR} O

fi

« $ADM N hpc-
privatedatal/fil es/$CLUSTER/ $AREA/ boot/|ive/ scibian9/files_dir/hpc-
confi g. conf is a configuration file for Puppet-HPC hpc- confi g- appl y utility:

[DEFAULT]

envi ronment =pr oduct i on

source=http://s3-system service. virtual : 7480/ hpc-config
keys_source=http://secret.service.virtual:1216

Using /var/tnp to nore easily nmanipulate /tnp nount

point during a puppet run.

tnpdi r=/var/tnp

Once all these files have been added to the cluster specific files directory, push and apply the
configuration on the admin node:

hpc-confi g- push && hpc-config-apply

Now that Clara is setup, the image can be created with the following command:

clara images create scibi an9

Also create the associated initrd environment:

clara images initrd scibian9

15.1. Diskless image generation | 99

© Scibian Projet — v1.9, 2019-04-05 -

Deploy the generate image and initrd to the p2p nodes with:

clush -g p2p nkdir -p /var/ww/ di skl ess/ sci bi an9

clush -g p2p \
--copy /var/cache/ adm n/ sci bi an9/{initrd-4.9.0-4-anmd64, viml i nuz- 4. 9. 0- 4- and64} \
--dest /var/ww/ di skl ess/sci bi an9

clush -g p2p \
--copy /var/cache/ adm n/ sci bi an9/ {sci bi an9. squashfs. torrent, sci bi an9. squashfs} \
--dest /var/ww/ di skl ess/ sci bi an9

Restart peer-to-peer services to load new files:
clara p2p restart
The diskless environment is finally ready and available to frontend and compute nodes.

15.2. Boot nodes

Before booting the frontend and compute nodes, they must be declared in the internal
configuration repository in the first place. Append the nodes to the boot _par ans hash in
$ADM N hpc- pri vat edat a/ hi er adat a/ $CLUSTER/ cl ust er. yani :

boot _par ans:
[...]
fbfront[1-2], fbgn0l

cowsi ze: '8G

medi a: "ran
fbcn[01-04] :

medi a: "ran

The cowsi ze must be increased to 8GB from default 2GB on frontend and graphical nodes
because these nodes need much more packages to be installed at boot time.

Then define the roles associated to the frontend and the compute nodes, for example front,
cn and gn. For these roles definitions, keep in mind the following rules:

e The frontend role must include the j obsched: : cl i ent while the compute nodes require
the j obsched: : exec profile instead.

* The profiles::environment::userspace:: packages must include the sci bi an-
hpc- f ront end meta-package in the frontend nodes role, sci bi an- hpc- conput e meta-
package in the standard compute nodes and sci bi an- hpc- gr aphi cal meta-package on
the graphical nodes.

The nodes must be added into the master _network hash in file $ADM N hpc-
privat edat a/ hi er adat a/ $CLUSTER/ net wor k. yam with all their network interfaces and
the MAC addresses of their network interface connected to the administration and their BMC.

Generate all the SSH host keys:

100 | 15.2. Boot nodes

s © Scibian Projet — v1.9, 2019-04-05

puppet - hpc/ scri pt s/ sync- ssh- host keys. sh hpc-pri vat edata $CLUSTER

Push and apply the configuration to the admin and generic service nodes:

hpc- confi g- push && clush -bg adnin, service hpc-config-apply -v

Finally, boot all the nodes in PXE mode with Clara:

clara ipm pxe @ront, @n, @n
clara ipm boot @ront, @n, @n

15.2. Boot nodes | 101

© Scibian Projet — v1.9, 2019-04-05

Chapter 16. Optional features

16.1. Tuning

TBD

16.2. Firewall

TBD

16.3. Kerberos

TBD

16.4. Internal APT repository

TBD

16.5. Storage Multipath

TBD

16.6. Monitoring

TBD

16.7. Metrics

TBD

16.8. HPCStats

TBD

16.9. Slurm WCKeys

TBD

102 | 16.1. Tuning

===== - © Scibian Projet — v1.9, 2019-04-05

16.10. Slurm-web REST API

Slurm-web is both a web interface and REST API service to get and visualize the current status
of the jobs and ressources managed by Slurm.

Puppet-HPC is able to deploy the REST APl component of Slurm.

nkdir hpc-privatedata/fil es/ $CLUSTER $AREA/ sl ur mneb

head -c 48 /dev/urandom | base64 > fil es/$CLUSTER/ $AREA/ sl ur meb/ secret. key
clara enc encode hpc-privatedatal/files/ $CLUSTER $AREA/ sl ur mweb/ secr et . key
rm hpc-privatedatal/fil es/ $CLUSTER/ $AREA/ sl ur mneb/ secr et . key

Where $AREA is the area of the nodes hosting the REST API.

Then, define XML cluster racking description file hpc-
privatedatal/fil es/ $CLUSTER $AREA/ sl ur mveb/ racks. xm according to Slurm-web
documentation.

Add profiles::http::slurmeb profile in the role of the nodes hosting the REST API.

Finally, push and apply the new configuration on the admin node and on the nodes hosting the
profile:

hpc-confi g- push

hpc-confi g-apply

clush -bg adm n, hpc_profiles: http::slurmweb \
hpc-config-apply -v

16.11. NFS High-Availability

TBD

16.12. Slurm power management

Generate and encrypt the SSH key used to poweroff the nodes from the batch nodes:

nkdir hpc-privatedatalfil es/ $CLUSTER/ $AREA/ pwigt

ssh-keygen -N "' -C root @wrgt -f hpc-privatedatal/fil es/ $CLUSTER/

$AREA/ pwngt/id_rsa_slurm

clara enc encode hpc-privatedatal/files/ $CLUSTER $AREA/ pwngt /i d_rsa_sl urm
rm hpc-privatedatal/files/ $CLUSTER/ $AREA/ pwngt /i d_rsa_slurm

Where $AREA is the area of the batch nodes.

Then add those settings in the cluster specific layer of the hiera repository:

16.10. Slurm-web REST API | 103

http://edf-hpc.github.io/slurm-web/
http://edf-hpc.github.io/slurm-web/installation.html#xml-racks-and-nodes-description
http://edf-hpc.github.io/slurm-web/installation.html#xml-racks-and-nodes-description

© Scibian Projet — v1.9, 2019-04-05 -

profiles::jobsched:: pwrgt:: enabl ed: true
slurmutils::pwrgt::ctld::config_options:

i pm:
prefix: "0 hiera('ipm _prefix')}"
user: "o hiera('ipm _user')}"

password: "% hiera('ipm _password')}"
slurmutils::pwrgt::ctld::priv_key_enc:
"Of::private files_dir}/pwrgt/id_rsa_slurmenc"
slurmutils::pwrgt::ctld::decrypt_passwd: "% hiera('cluster_decrypt_password')}"

slurmutils:: pwrgt:: exec:: pub_key: <PUBKEY>

Where <PUBKEY> is the public key in file hpc-
privatedata/fil es/ $CLUSTER $AREA/ pwngt /i d_rsa_sl urm pub.

Finally, apply the new configuration on the batch nodes and all the compute nodes:

hpc- confi g- push
clush -bg batch hpc-config-apply -v
clush -bg conpute hpc-config-apply -v

104 | 16.12. Slurm power management

===== - © Scibian Projet — v1.9, 2019-04-05

Bootstrap procedures

This chapter contains all the procedures to boostrap all the crucial services for a Scibian HPC
system: LDAP, Ceph, MariaDB with Galera, SlurmDBD, etc.

Chapter 16. Optional features | 105

© Scibian Projet — v1.9, 2019-04-05 -

Chapter 17. LDAP bootstrap

As stated in external services section of the Reference Architecture chapter, a central LDAP
directory server external to the Scibian HPC cluster is required. The LDAP directory server on
the cluster is just is a replica of this central external server.

The Puppet-HPC openl dap module expects a LDIF file containing a full dump of the LDAP
replica configuration. The easiest way to produce this bootstrap LDIF file is to install and
configure an LDAP server replica manually and dump the live configuration.

First, install an LDAP server with common LDAP utilities:
apt-get install slapd |dap-utils

Select the HDB database backend. Then, configure the base DN, the domain name, the
organization name according to your environment, and set the administration password.

Write the LDAP replication configuration LDIF file syncrepl confi g. | dif, similarly to this
example:

dn: ol cDat abase={ 1} hdb, cn=confi g
changetype: nodify
add: ol cSyncrepl
ol cSyncrepl: rid=001 provi der =<LDAP_SERVER_URL> bi ndret hod=si npl e ti meout =0
tls_cacert=<CA CRT_CHAI N>
net wor k- ti nmeout =0 bi nddn="<BI ND_DN>" credenti al s="<Bl ND_PASSWORD>"
sear chbase="dc=cal i bre, dc=edf, dc=fr"
schemachecki ng=on type=refreshAndPersist retry="60 +"

add: ol cUpdat er ef
ol cUpdat eref: <LDAP_SERVER_URL>

Where:

LDAP_SERVER URL is the URL to the organization central LDAP server, ex:
| daps:/ /| dap. conpany.tld.

If using TLS/SSL, CA_CRT_CHAI Nis the absolute path to the CA certificate chain (up-to root
CA certificate), ex: / usr/ | ocal / share/ ca-certificates/ca-chain.crt

Bl ND_DNis the replication user DN, ex: cn=r epl i cat i on, dc=conpany, dc=tld

Bl ND_PASSWORD is the password of the replication user

Inject this LDIF replication configuration file into the LDAP server:

| dapnodify -a -Y EXTERNAL -H | dapi:// -f syncrepl _config.ldif

Using the same technique, configure to your needs the indexes, ACLs, TLS/SSL, password

106 | Chapter 17. LDAP bootstrap

===== - © Scibian Projet — v1.9, 2019-04-05

policy, kerberos, etc. Finally, generate the full LDAP config dump with:

slapcat -b cn=config > config_replica.ldif

or:

| dapsearch -Y EXTERNAL -H | dapi:/// -b cn=config > config-replica.ldif

The config_replica.ldif file must be deployed encrypted within Puppet-HPC private files
directory. Please refer to Puppet-HPC Reference Documentation for more details.

After a fresh installation the cluster's services virtual machines that host the LDAP directory
replicas, the confi g _replica.ldif is deployed by Puppet and the LDAP replication must be
bootstraped with this script:

make_| dap_replica. sh

The script will ask you to confirm by typing YES and press enter.

Chapter 17. LDAP bootstrap | 107

© Scibian Projet — v1.9, 2019-04-05 -

Chapter 18. MariaDB/Galera bootstrap

The Puppet-HPC nar i adb module configures an active/active MariaDB cluster based on galera
replication library. On the service virtual machines that host this database system, the
corresponding mar i adb system service will not start unless it is already started on another
service virtual machine. If it is not running anywhere else, the service must bootstraped with this
command:

gal era_new cl uster

This command starts the MariaDB service on the local host in new cluster mode. The state of
the local service can be checked with this command:

systentt!l status mariabd. service

This command must report on running nysql d process. In some case, typically when a
MariaDB/Galera was not properly stopped, the command may fail and report this error:

[ERROR] WBREP: It nmay not be safe to bootstrap the cluster fromthis node. It

was not the last one to | eave the cluster and nay not contain all the updates.
To force cluster bootstrap with this node, edit the grastate.dat file manual ly
and set safe_to_bootstrap to 1 .

In this case, and if you are totally sure that MariaDB service is stopped on all nodes, the error
can be ignored with the following command:

sed -i 's/safe_to_bootstrap: O/safe_to_bootstrap: 1/' /var/lib/nysql/grastate.dat

Then, the MariaDB/Galera cluster can be started again with gal era_new cl uster.

Once the service is started on all service virtual machines, you can check the cluster replication
status with:

nysql -e "SHOW STATUS LI KE ' wsrep_cl uster_size'"

This result must be the number of expected active nodes in the MariaDB/Galera cluster (ex: 2).

108 | Chapter 18. MariaDB/Galera bootstrap

===== - © Scibian Projet — v1.9, 2019-04-05

Chapter 19. SlurmDBD bootstrap

After its first installation on the cluster, the SlurmDBD accounting database is empty. First, the
cluster must be created in the database:

sacctngr --imedi ate add cl uster <name>

Where <nane> is the name of the cluster.

Then, once the sync- account s utility is configured, run it to create all accounts and users:
slurm sync-accounts

Then, it is possible to create QOS and configure fair-share depending upon your needs.

If using wckeys, they must be bootstrapped by adding the first key manually using the
sacct ngr command and then run the importation script:

sacctngr -i add user root wckey=<init>
slurmwckeys_setup. sh

Chapter 19. SlurmDBD bootstrap | 109

https://github.com/edf-hpc/slurm-llnl-misc-plugins/tree/master/sync-accounts
https://slurm.schedmd.com/qos.html
https://slurm.schedmd.com/priority_multifactor.html#fairshare

© Scibian Projet — v1.9, 2019-04-05 -

Chapter 20. Ceph

20.1. Ceph Deploy

The ceph- depl oy directory is created during the initial ceph installation, to use the ceph-
depl oy again or from another service or admin node, it must be recreated.

nkdir ceph-depl oy

cd ceph-depl oy

ceph-depl oy config pull fbservicel
ceph-depl oy gat herkeys fbservicel

20.2. Mon

After the reinstallation of one of the generic service nodes with a mon, it must be re-initialized.
This procedure only works on a running cluster, the initial mon creation uses another command.

From an admin node:

cd <ceph deploy directory>
ceph-depl oy --overwite-conf nmon add <nopbn host name>

20.3. OSD

This procedure only applies if the content of an OSD volume is lost. If the node is reinstalled
without erasing the content of the OSD volume, the configuration in puppet will be enough to
start the osd volume again.

The relevant OSD ID can be retrieved with:
ceph osd tree

Before doing this procedure, make sure the OSD is really down and not mounted on the OSD
node.

20.3.1. Removing old OSD

The old OSD must be removed from the configuration (stored by the MON).

ceph osd crush renove osd. X
ceph auth del osd. X
ceph osd rm X

110 | 20.1. Ceph Deploy

===== - © Scibian Projet — v1.9, 2019-04-05

20.3.2. Re-creating the OSD

cd <ceph depl oy directory>
ceph-depl oy osd prepare clserviceY:sdb
ceph-depl oy di sk zap cl serviceY: sdb

The OSD id and authentication key should be updated on the hiera configuration. In most cases,
the new OSD will take the same ID as the old one. You can get the new ID and the new key
with:

ceph osd tree
ceph auth print-key osd. X

20.4. CephFS

CephFS filesystem is used between the batch nodes to shared Slurm controller state. The
filesystem must be initialized before being used by Slurm.

First, mount temporarily the CephFS filesystem:

mount -t ceph -0 nane=adnin, secretfil e=/etc/ceph/client.key
f bservice2, fbservi ce3, fbserviced:/ [/ mt

Create a subdirectory for Slurm controller, set its ownership and restrict its mode:

nkdir /mt/slurnctld
chown slurm /mmt/slurnctld
chnod 0700 /mt/slurnctld

Finally, umount it:

unmount / mmt

Puppet-HPC is now able to use this filesystem for Slurm on batch nodes.

20.4. CephFS | 111

© Scibian Projet — v1.9, 2019-04-05 -

Chapter 21. NFS HA bootstrap

The shared storage of the NFS server contains a directory that holds the state of the clients
(mainly the locks). When the shared NFS storage is created, it must be formated and this state
directory must be created.

The shared storage must be on a specific LVM Volume Group. What the PVs are for this volume
group and how they are configured depends on the hardware available.

In the following example, the PV/LV is VG_NAS/LV_NAS and is to be mounted as / sr v/ adni n.

nkfs.ext4 /dev/ VG NAS/ LV_NAS

nkdir /srv/admn

mount /dev/ VG NAS/ LV_NAS /srv/adm n

nkdir -p /srv/adm n/restricted/state/nfs/v4recovery
unmount /srv/admin

After these steps, the keepalived daemon can be started on the nodes. The MASTER node will
mount the storage and export it.

112 | Chapter 21. NFS HA bootstrap

===== - © Scibian Projet — v1.9, 2019-04-05

Production procedures

In this chapter are listed all the technical procedures to follow for regular operations occurring
during the production phase of the supercomputer. This notably includes changing any
encryption or authentication key, changing passwords, reinstalling nodes, etc.

Chapter 21. NFS HA bootstrap | 113

© Scibian Projet — v1.9, 2019-04-05 -

Chapter 22. MAC address change

This procedure explains how to modify the Puppet-HPC configuration to change an hardware
Ethernet address after a motherboard replacement, for example.

First, the yaml file in the hieradata repository containing the nast er _net wor k hash must be
edited to replace the old hardware address. A description of this hash can be found in the
Installation section of this guide.

The modified configuration must be pushed to the shared administration directory with the hpc-
confi g- push command:

hpc-confi g- push

INFO creating archive /tnp/puppet-config-push/tnp_ndqOuj z/ puppet - confi g-
envi ronment. tar. xz

I NFO S3 push: pushing data in bucket s3-system

Then apply the configuration on the ser vi ce nodes, who runs the DHCP server:

hpc-config-apply

It is not possible to run the hpc- confi g- appl y command on all the service
NOTE nodes at the same time exactly. A short delay must be respected as the Ceph
service can be disturbed by a restart of the network service.

114 | Chapter 22. MAC address change

===== - © Scibian Projet — v1.9, 2019-04-05

Chapter 23. Password/keys changes

23.1. Root password

The hashed root password is stored in the variable
profiles::cluster::root_password _hash in yaml files. The value must be encrypted
using eyaml. It can be simply changed using the eyam command.

eyam edit cluster.yan

profiles::cluster::root_password_hash: DEC:: PKCS7[hashed_password]!

Once changed, the new configuration must be applied on all the machines of the cluster.

23.2. Root SSH key

The root SSH keys are stored in the internal repository. The privates keys must be encrypted.
The SSH public rsa key is also in the variable openssh: : server::root_public_key. Itis
necessary to change the files and the value of the variable at the same time. To avoid
connections problems, it is necessary to follow these steps in this order:

1. Change the keys files and the variable openssh: : server::root_public_key in the
internal repository
2. Apply the configuration on all the machines exept the admin one

3. Apply the new configuration on the admin server.

In case of desynchronization between the keys on the admin node and those

NOTE - .
on the others nodes, it is always possible to use the root password to connect.

23.3. SSH host keys

The SSH host keys are stored, encrypted, in the internal repository. To avoid connections
problems, it is necessary to follow these steps in this order:

1. Change the keys files in the internal repository

2. Apply the configuration on all the machines of the cluster, including the admin machine

3. Delete the file /root/.ssh/known_hosts on the admin node.

4. When connecting to the nodes, /root/.ssh/known_hosts will be automatically populated if the
Scibian HPC default configuration is used.

23.1. Root password | 115

© Scibian Projet — v1.9, 2019-04-05 -

23.4. Eyaml keys

Replacing the eyaml PKCS7 key pair consist in reality of two actions:

1. Generate a new pair of keys (eyaml cr eat ekeys)

2. Replace all the values encoded with the old pair with ones encoded with the new pair of
keys.

As these operations implies decoding files and re-encoding them with another
key pair, it is not possible to perform other administrative operations (like
NOTE applying the configuration on nodes) on the cluster at the same time. The

changing keys operation must be fully completed before resuming "normal”
administrative operations.

These steps must be followed in order to safely change the eyaml keys:

Save the old keys:

cp /etc/ puppet/secure/ keys/private_key. pkcs7. pem\

/ et c/ puppet/ secur e/ keys/ pri vate_key. pkcs7. pem ol d
cp /etc/ puppet/securel/ keys/ public_key. pkcs7. pem\

| et c/ puppet / secur e/ keys/ publ i c_key. pkcs7. pem ol d

Copy the new keys in /etc/puppet/secure/keys/.

Decrypt all the yaml files encoded using the old keys:

eyam decrypt \
--pkcs7-private-key /etc/ puppet/securel/ keys/ private_key. pkcs7. pemold \

--pkcs7-public-key /etc/puppet/securel/ keys/public_key.pkcs7. pemold \
-e hieradatal/<cluster>/cluster.yam \

> hi eradat a/ <cl uster>/cl uster.decrypt.yan

The decrypt.yanl contains all the secret in plain text. It should be removed as soon as
possible.

Encrypt the files with the new keys:

eyanml encrypt -e hieradatal/<cluster>/cluster.decrypt.yam \
> hi eradat a/ <cl ust er>/cl uster.yan
rm hi eradat a/ <cl ust er >/ cl ust er. decrypt. yan

Remove the old saved keys from the admin node:

rm/etc/ puppet/secure/ keys/private_key. pkcs7. pemol d \
| et ¢/ puppet/ secur e/ keys/ publ i c_key. pkcs7. pem ol d

116 | 23.4. Eyaml keys

===== - © Scibian Projet — v1.9, 2019-04-05

Create a tarball, encode it with cl ara enc and add it to the files directory of the internal
repository:

tar cJf /tnp/keys.tar.xz -C /etc/puppet/secure keys
clara enc encode /tnp/keys.tar.xz
mv /tnp/ keys.tar.xz.enc <internal repository>/files/<cluster>/eyan

Where:

« <internal repository> is the directory that contains the clone of the internal repository.

¢ <cluster> is the name of the cluster.

At this stage, the keys are now stored encrypted in the internal repository and are available
locally in the standard eyaml paths.

In the default Scibian-HPC configuration, the PKCS7 keys propagation service runs on all the
generic service nodes. First, the encoded tarball must be manually copied on the nodes:

scp <internal repository>/files/<cluster>/eyan /keys.tar.xz <generic server
X>:/tnp

Where <generic server X> is the hostname of the generic service node.

Then apply the configuration using the new keys:
hpc-config-apply -vv --keys-source=/tnp

This will copy the eyaml PKCS7 key pair in the right directory to be serviced by the propagation
service to all others nodes when applying the puppet configuration. These last two operations
must be executed on all the generic service nodes.

Don't forget to remove the keys from the /t np directory on the admin node and on all the
service nodes.

rm/tnp/ keys.tar.xz
clush -w @ervice rm/tnp/keys.tar.xz

23.5. Internal repository encoding key

As these operations implies decrypting files and re-encrypting them with
another key, it is not possible to perform other administrative operations (like

NOTE applying the configuration on nodes) on the cluster at the same time. The
changing key operation must be fully completed before resuming "normal”
administrative operations.

23.5. Internal repository encoding key | 117

© Scibian Projet — v1.9, 2019-04-05 -

Replacing the AES key used to encode files in the internal repository consist in several steps.

Generate a new AES key:

openssl rand -base64 32

For each encoded file in the internal repository, it is necessary to decode it with the old key and
re-encode it with the new one.

clara enc decode <internal repository>/files/<cluster>/<filenane>. enc
openssl aes-256-cbc \

-in <internal repository>/files/<cluster>/<filename> \

-out <filename>.enc -k <AES KEY>
rm<internal repository>/files/<cluster>/<filename>

Where:

« <internal repository> is the directory that contains the clone of the internal repository
« <cluster> is the name of the cluster

 <filename> is the path of the file to encode

<AES KEY> is the random 256 hits key.

Using cl ar a for both operations, decode and encode, is not possible as it support only one
AES key.

This re-encryption step can be automated with the r eencode-fi | e. sh script in the puppet -
hpc scripts dir:

cd <internal repository>/files/<cluster>
find -name "*.enc" \
-exec <puppet-hpc path>/scripts/reencode-file.sh\
/tnp/ ol dkey [/t np/ newkey ' {}

The files /tnp/ ol dkey and /t np/ newkey are files with just the old and new AES key
respectively. This script does not depend on cl ar a but basically performs the same steps as
above.

The AES key must be placed in cluster_decrypt_password in the cluster layer of the Hiera
repository:

eyanl edit hieradatal/<cluster>/cluster.eyan

Replace the key:

118 | 23.5. Internal repository encoding key

===== - © Scibian Projet — v1.9, 2019-04-05

cluster_decrypt _password: DEC:: PKCS7[<AES KEY>]!
Apply the new configuration on the admin node, to update cl ar a configuration:

hpc-config-apply

23.6. Replication account password

The steps to change these credentials are described here:

1. Decode the configuration Idif file:

clara enc edit <internal repository>/files/<cluster>/<filenane>. enc

2. The field to change is ol cSyncr epl :, it contains all the necessary informations to connect
to the master LDAP server (login, password, URI, etc ..)

3. Apply the new configuration on the proxy nodes.

4. Follow the LDAP bootstrap procedure as described in LDAP bootstrap on each proxy node.
It is recommended to wait until the first Idap replicate is complete before attempting to
update the second, to not disrupt authentication across the cluster.

It is possible to change others values with this procedure, for example the root

NOTE
LDAP password.

23.7. Monitoring certificates

The certificates used for monitoring are stored, encrypted, in the internal repository in <internal
repository>/files/<cluster>/icinga2/certs/. Each host has a certificate and a key. The steps to
follow to change them are:

1. Change the key and certificate files in the internal repository
2. Apply the configuration on the concerned node

3. Update the certificate on the Icinga2 server

23.8. Munge key

NOTE Scheduling service and jobs must be stopped to change the munge key.

WARNING This will kill running jobs.

23.6. Replication account password | 119

© Scibian Projet — v1.9, 2019-04-05 -

1. Stop the sl ur nd and sl ur ntt | d daemons.

2. Stop the munge daemon on all nodes.

3. Encrypt the new key with dara

repository>/files/<cluster>/munge/munge.key.enc
4. Apply the new configuration on all nodes.

5. restart the daemons.

23.9. Repo keyring

and place it in <internal

NOTE The packages must be saved in another place.

The cluster must use a private cluster keyring. This keyring is used to sign the local packages

repository.

It is stored in the internal repository: <internal repository>/files/<cluster>/repo/

Here are the steps to follow to change it:

1. Generates a new keyring:

LANG=C gpg --no-default-keyring \

--keyring <internal repository>/files/<cluster>/repo/cluster_keyring.gpg \

--secret-keyring <interna

repository>/files/<cluster>/repo/cluster_keyring.secret.gpg \

- -gen- key

2. Encode the secret file with cl ara encode.

3. Apply the configuration on the admin node.

4. Delete the folder containing the local repository.
5. Re-create the repository with cl ar a:

clara repo key
clara repo init scibian9-hpc

6. Add the previously saved packages with cl ar a:

clara repo add sci bi an9- hpc nypackage_1-2. dsc

...

120 | 23.9. Repo keyring

===== - © Scibian Projet — v1.9, 2019-04-05

23.10. MariaDB users

Generate passwords conform with your organization policy and edit the following parameters
with eyanml in the hiera repository:

e sl urnmdbd_sl urm db_password

e slurnmdbd_slurnro_db_password

These parameters correspond to the passwords of the MariaDB having respectively R/W and
R/O grants on the SlurmDBD database.

Once modified, push and apply the configuration with the following commands:

hpc-confi g-push && \
clush --fanout=1 -bg batch hpc-config-apply -v

The hpc- confi g- appl y command will perform the following steps, on each batch node:

Update the passwords in the configuration file of the Slurm nmysql - set up utility.

Update the passwords in the MariaDB database

Update SlurmDBD configuration (if R/W password changed)

Restart SlurmDBD (if R/W password changed)

The --fanout=1 parameter of the cl ush command makes sure the configuration is not
applied simultaneously on both batch nodes. This could cause the SlurmDBD daemon to be
restarted at the same time and make this service unavailable for a short period of time.

23.10. MariaDB users | 121

© Scibian Projet — v1.9, 2019-04-05 -

Chapter 24. Administration node re-installation

This procedure will wipe the first disk of the admin node, if some customizations are not in the
Puppet configuration, this should be handled separately.

Before, powering off the administration node, check that:

e There is an alternative route to connect to the service node (can be the service nodes
themselves)

« Itis possible to connect to the BMC IPMI, and especially to the Serial Over LAN console

« Itis possible to connect to the Ethernet administration network switch

The administration node has no critical service in the reference architecture, so it can simply be
powered Off:

power of f

In some Ethernet bonding setups, the node cannot do a PXE boot with an
NOTE active bonding configuration on the Ethernet switch. If this is the case, refer to
the documentation of the network switch to disable the bonding configuration.

To be re-installed, the administration node must perform a network boot. This can be configured
with i pmi t ool (1) installed on a host that has access to the BMC network interface:

ipmtool -1 lanplus -H <bnt host> -U <bnt username> -P chassis bootdev pxe
ipmtool -I lanplus -H <bnt host> -U <bnt username> -P chassis power on

Next steps will happen once the node is installed and has rebooted, the installation can be
followed through serial console:

ipmtool -I lanplus -H <bnt host> -U <bnt username> -P sol activate

If the Ethernet switch configuration had to be modified to setup PXE boot, the

NOTE L . .
modification must be reverted to its nominal status.

122 | Chapter 24. Administration node re-installation

===== - © Scibian Projet — v1.9, 2019-04-05

Chapter 25. Service node re-installation

Before re-installing a Service node, active Virtual Machines on the nodes should be migrated
away from the node. Clara can be used to list the active VMs and do the live migration.

Listing the VMs:
clara virt list | grep clserviceX
Migrate the live VMs with the command:

clara virt mgrate <vmane> --dest-host clserviceY

These points should be checked before turning off a Service Node:

e The ceph cluster should be HEALTH _OK (ceph heal t h), with at least three OSD i n
e consul t should return services as passing on at least three nodes

¢ On an Intel Omni-Path cluster, the opaf abri ci nf o should return at least one Master and
one Standby node

Once there is no VM remaining on the node, it can be powered off safely, the other Service
node should ensure there is no service outage. The power off can be done from the node itself:

power of f

In some Ethernet bonding setups, the node cannot do a PXE boot with an
NOTE active bonding configuration on the Ethernet switch. If this is the case, refer to
the documentation of the network switch to disable the bonding configuration.

To be re-installed, the service node must perform a network boot. This can be configured with
clara:

clara i pm pxe clserviceX
clara ipm on clserviceX

Next steps will happen once the node is installed and as rebooted, the installation can be
followed through serial console:

clara i pm connect clserviceX

After a Service node re-installation, the ceph services: OSD, MDS and RadosGW should be
reconfigured automatically by the Puppet HPC configuration. The Mon service (not present on

Chapter 25. Service node re-installation | 123

© Scibian Projet — v1.9, 2019-04-05 -

every node), must be boot-strapped again. This procedure is described with other Ceph
bootstrap procedures.

In order to validate the generic service node re-installation, there are some relevant checks to
perform.

* High-Speed network manager (Intel Omni-Path):

opafrabricinfo

The reinstalled node must appear as a Master or Standby node.

» Check the ceph cluster is healthy:

ceph status

The cluster should be HEALTH OK with all OSDs, Mons and MDSs.

e Consul:

consul t

All services on all nodes should have the state passi ng.

If the Ethernet switch configuration had to be modified to setup PXE boot, the

NOTE . . .
modification must be reverted to its nominal status.

124 | Chapter 25. Service node re-installation

===== - © Scibian Projet — v1.9, 2019-04-05

Chapter 26. Network Boot and Installation Tuning

Puppet-HPC deploys a network boot and installation system with sane default designed to work
in most situations. However, you may need to tune the default setup for specific needs. The
following sections how to alter the setting of all the network boot and installation components.

26.1. iPXE ROM

On Scibian HPC clusters, the default iPXE ROM is provided by the i pxe package. Alternatively,
you can build a custom ROM following the instructions available on iPXE website and deploy it
with Puppet-HPC.

Firstt, copy the —custom ROM (ex: customkpxe) in the $ADM N hpc-
privatedatal/fil es/ $CLUSTER cl uster/boot/i pxe/ directory.

Then, define the boottft p:: hpc_fil es hash in the cluster layer of the Hiera repository to
declare the file to deploy:

boottftp::hpc_files
"Ofhiera('tftp_dir')}/custom kpxe"
source: "% ::private files_dir}/boot/i pxel/custom kpxe"

Then, set the i pxebi n parameter accordingly in the boot _par ans hash of the cluster layer of
the Hiera repository, for example:

boot _par ans:
def aul ts:
i pxebi n: custom kpxe

Finally, deploy configuration changes on DHCP and boot servers:

hpc-confi g- push && \
clush -bg hpc_profiles:bootsystem:server, hpc_profiles:dhcp::server \
hpc-confi g-apply

26.2. Bootmenu Entries

As explained in Section 5.2, “IPXE Bootmenu Generator”, the bootmenu entries available in
iPXE are declared in YAML files. Puppet-HPC provides a mechanism to deploy custom entries
and optionally override the defaults provided by sci bi an- hpc- net boot - boot menu package.

For this purpose, edit the cluster layer of the Hiera repository to declare the
boot system : menu_entri es hash profile parameter, for example:

26.1. iPXE ROM | 125

http://ipxe.org/

© Scibian Projet — v1.9, 2019-04-05 -

profiles::bootsystem:menu_entries
sci bi an9
ram
test:

label: Run {{ os }} in RAM

initrd: initrd

kernel : vminuz

opts: >
initrd={{ initrd }}
consol e={{ console }}
et hdevi ce={{ boot _dev }}
et hdevi ce-ti meout ={{ dhcp_tineout }}
cowsi ze={{ cowsize }}
transpar ent _hugepage=al ways
di sk-format ={{ disk_format }}
di sk-raid={{ disk_raid }}
boot =l i ve
uni on=over | ay
fetch=${base-url}/{{ os }}.squashfs.torrent
{{ kernel _opts }}

This declares an additional sci bi an9-ram t est entry. Optionally, it is also possible to set this
entry as the default for some nodes in the boot _par ans hash of the cluster layer of the Hiera
repository, for example:

boot _par ans:
f bcn04:
0s: sci bi an9
medi a: ram
version: test

This way, the f bcn04 node will boot this new entry by default.

Finally, deploy the configuration changes on boot servers:

hpc-confi g- push && \
clush -bg hpc_profiles:bootsystem:server \
hpc-confi g-apply

26.3. Debian Installer Environment

As explained in Section 5.1.2, “Disk installation”, the Debian installer environment is installed
with debi an-i nstal | - *- net boot - and64 packages. These packages are designed to work
on most hardware, however it may be required to use alternate environment in some cases,
notably if the hardware needs special non-free modules or firmwares during the installation.

For this purpose, Puppet-HPC lets the ability to deploy custom Debian Installer environment
within an archive.

For information, it is possible to build a base archive using the packages, for example:

126 | 26.3. Debian Installer Environment

===== - © Scibian Projet — v1.9, 2019-04-05

install netboot package
apt-get install debian-installer-9-netboot-and64

create the base netboot archive
tar chzf $ADM N hpc-privatedata/fil es/ $CLUSTER/ cl uster/ boot/ di sk-
installer/scibian9/netboot.tar.gz \

-C /usr/lib/debian-installer/imges/9/ and64/text .

Starting from this point, the archive can be tuned upon your needs.

To deploy this archive on the boot servers, the boot htt p: : ar chi ves hash parameter must be
defined accordingly in the cluster specific layer of the Hiera repository:

boot htt p: : archi ves:
"o hiera('website_dir')}/disk/scibian9/custon netboot.tar.gz":
sour ce: "o ::private files_dir}/boot/disk-
install er/scibian9/netboot.tar.gz"
extract _path: "%hiera('website _dir')}/disk/scibian9/custont
extract: true

Then, define a bootmenu entry, following the procedure in Section 26.2, “Bootmenu Entries”, to
network boot this custom environment.

Finally, deploy the new configuration on the boot servers:

hpc-confi g- push && \
clush -bg hpc_profiles: bootsystem:server \
hpc-confi g-apply

26.4. Alternate Partition Schemas

As explained in Section 5.3, “Debian Installer Preseed Generator”, the preseed generator
provides a link to a CGI script that generates dynamically for the node a partition schema (aka.
recipe) for Debian installer partman utility.

By default, this script sends a partition schema common to all nodes. The default common
partition schema is provided by scibi an-hpc-netboot-preseedator package. It
configures the / dev/ sda disk with LVM physical volume and creates dedicated logical volumes
for /, /var, /t np and swap partitions. However, the script is able to send specific partitions
schemas for a given host or role.

Puppet-HPC gives the ability to override the default common partition schema provided by the
package and to deploy these specific partition schemas and

Once the alternate partman partition recipe is defined, copy the file into $ADM N hpc-
privatedatal/fil es/ $CLUSTER/ cl ust er/ boot/di sk-installer/schemas/ directory.

26.4. Alternate Partition Schemas | 127

© Scibian Projet — v1.9, 2019-04-05 -

The debi an-i nstal |l er package provides documentation to help writing
NOTE partman recipes, in files / usr/ shar e/ doc/ debi an-
i nstall er/devel /partman-auto*-recipe.txt*.

Then, define the boothttp::partition_schenmas hash parameter in cluster layer of the
Hiera repository to declare the partition schemas to deploy, for example:

boothttp::partition_schenas:

conmon:
src: "9 ::private files _dir}/boot/disk-installer/schemas/comon"
dest: 'conmmon'
proxy:
src: "9 ::private files_dir}/boot/disk-installer/schemas/roles/proxy"
dest: 'rol es/proxy’
f bbat ch2:
src: "9 ::private files_dir}/boot/disk-installer/schemas/nodes/fbbatch2"

dest: 'nodes/fbbatch2'

In this example, the following partition schemas are deployed:

¢ An override of the common partition schema,
« A partition schema for all nodes having the proxy role,

* A partition schema specific to f bbat ch2 node.

Finally, deploy the new configuration on the boot servers:

hpc-confi g- push && \
clush -bg hpc_profiles:bootsystem:server \
hpc-confi g-apply

128 | 26.4. Alternate Partition Schemas

s © Scibian Projet — v1.9, 2019-04-05

Chapter 27. Frontend access

27.1. Draining

To perform a scheduled reboot of a frontend it is better to avoid new connection going to the
frontend node that will be rebooted. The new connections are highly available and load
balanced with IPVS.

It is possible to remove a frontend from the pool of node accepting new connections without
killing active connections with the i pvsadmcommand by setting the weight of a node to O.

To list the current weight, on a frontend:

i pvsadm -1 n
IP Virtual Server version 1.2.1 (size=4096)
Prot Local Address: Port Schedul er Fl ags

-> Renot eAddr ess: Port Forward Wei ght ActiveConn | nAct Conn
TCP 172.16.1.16:22 rr persistent 600

-> 172.16.1.11: 22 Rout e 1 10 0

-> 172.16.1.12: 22 Rout e 1 6 0

-> 172.16.1.13: 22 Rout e 1 1 0

-> 172.16. 1. 14: 22 Rout e 1 15 0

-> 172.16.1.15: 22 Rout e 1 1 0

To avoid a frontend node being attributed to new sessions, the weight of the node can be
manually set to 0. This setting does not completely forbid new connection to go to the node, if a
user already has a session, new session will go to the same node regardless of the weight. This
setting also does not block connections made directly to the node and not the virtual IP address.

i pvsadm-e -t 172.16.1.16:22 -r 172.16.1.11:22 -w O
i pvsadm -1 n

IP Virtual Server version 1.2.1 (size=4096)

Prot Local Address: Port Schedul er Fl ags

-> Renot eAddr ess: Port Forward Wei ght ActiveConn | nAct Conn
TCP 172.16.1.16:22 rr persistent 600

-> 172.16.1.11: 22 Route O 10 0

-> 172.16.1.12: 22 Route 1 6 0

-> 172.16.1.13: 22 Rout e 1 1 0

-> 172.16. 1. 14: 22 Route 1 15 0

-> 172.16.1.15: 22 Route 1 1 0

The modification can be reversed by setting the weight back to 1 manually.

ipvsadm-e -t 172.16.1.16:22 -r 172.16.1.12:22 -w 1

27.1. Draining | 129

© Scibian Projet — v1.9, 2019-04-05 -

Chapter 28. NFS HA

28.1. Starting a node

When a node start is should not start the keepalived service automatically. This permits a failed
node to be started without it becoming master with an remaining problem.

Before starting the keepalived service, the following conditions must be met:

* The multipath-tools service must be active with a running nrul t i pat hd process.

e The keepalived service must be disabled

When these conditions are met, the service can be started:

systentt!l start keepalived

If the node is to become master (master node in the VIP configuration or other node is down),
check that the first check goes well. It runs every minutes and logs are in
/var /| og/ user. | og. The message following message must appear:

Mar 17 17:19:01 fbnfsl hpc_nfs_ha_server_check.sh.info: INFG fbnfsl All checks are
X

28.2. Manual Fail Over

If the master node disappears, because it is turned off or because the keepalived service is
stopped, the failover will happen, but it will take a bit of time (a little more than a minute). This
timeout can be entirely avoided by doing a manual failover of the master node before cutting the
keepalived service.

To do this, the keepalived configuration must be changed manually on the node. Edit the file
/ et c/ keepal i ved/ keepal i ved. conf. Find the configuration for the NFS VIP and change
the priority to 40, and the role to BACKUP. The service must be reloaded:

service keepalived rel oad

The failover should happen quickly. Once the node failed over, stop the keepalived service:
systenttl stop keepalived

The original configuration must be restored before starting the service again. This will happen if
you launch a hpc-config-apply manually or if you reboot the node.

130 | 28.1. Starting a node

===== - © Scibian Projet — v1.9, 2019-04-05

Chapter 29. Services

This section contains usefull procedures for casual operations on infrastructure services.

29.1. Packages Caching purge

In order to invalidate and purge the packages caching service apt - cacher - ng cache content,
run the following commands consecutively:

clush -bg service systenctl stop apt-cacher-ng.service

clush -bg service rm-rf /var/cache/ apt-cacher-ng

clush -bg service nkdir /var/cache/ apt-cacher-ng

clush -bg service chown apt-cacher-ng: /var/cache/ apt-cacher-ng
clush -bg service systenttl start apt-cacher-ng.service

H o HHH

29.1. Packages Caching purge | 131

© Scibian Projet — v1.9, 2019-04-05 -

Chapter 30. Virtual Machines

This section contains procedure related with virtual machines management with clara.

30.1. Deleting a Virtual Machine

A Virtual Machine is composed of two mostly independant objects:

e The disk image

¢ The definition on a host
The two objects must be deleted separately.

The first step is to stop the Virtual Machine:
clara virt stop <vm name>

Once it is in the state SHUTOFF you can undefine it:
clara virt undefine <vm nane>

The VM will still appear on clara virt [|ist with the state: M SSI NG. It means clara still
sees the disk image but not the Virtual Machine definition.

You can then proceed with deleting the disk image, by checking the full disk image name with
clara virt list --detail s, you mustfind the volume name and the pool name.

On a physical host:

virsh vol -del ete --pool <pool _nanme> <vol une_nane>

On all other physical hosts:

virsh pool -refresh <pool _name>

132 | 30.1. Deleting a Virtual Machine

	Scibian 9 HPC Installation guide
	Table of Contents
	About this document
	Purpose
	Structure
	Typographic conventions
	Build dependencies
	License
	Authors

	Reference architecture
	Chapter 1. Hardware architecture
	1.1. Networks
	1.2. Infrastructure cluster
	1.3. User-space cluster
	1.4. Storage system

	Chapter 2. External services
	2.1. Base services
	2.2. Optional services

	Chapter 3. Software architecture
	3.1. Overview
	3.2. Base Services
	3.3. Additional Services
	3.4. High-Availability

	Chapter 4. Conventions
	Chapter 5. Advanced Topics
	5.1. Boot sequence
	5.2. iPXE Bootmenu Generator
	5.3. Debian Installer Preseed Generator
	5.4. Frontend nodes: SSH load-balancing and high-availability
	5.5. Service nodes: DNS load-balancing and high-availability
	5.6. Consul and DNS integration
	5.7. Scibian diskless initrd

	Installation procedure
	Chapter 6. Overview
	Chapter 7. Requirements
	Chapter 8. Temporary installation node
	8.1. Base installation
	8.2. Administration environment

	Chapter 9. Internal configuration repository
	9.1. Base directories
	9.2. Organization settings
	9.3. Cluster directories
	9.4. Puppet configuration
	9.5. Cluster definition
	9.6. Service role
	9.7. Authentication and encryption keys

	Chapter 10. Generic service nodes
	10.1. Temporary installation services
	10.2. First Run
	10.3. Second Run
	10.4. Base system installation
	10.5. Ceph deployment
	10.6. Consul deployment
	10.7. Temporary installation node sweep

	Chapter 11. Admin node
	11.1. Base system
	11.2. Administration environmnent

	Chapter 12. Service virtual machines
	12.1. Libvirt settings
	12.2. Clara configuration
	12.3. Virtual machine definitions
	12.4. Required virtual machines

	Chapter 13. LDAP Authentication
	13.1. Directory replica
	13.2. Clients setup

	Chapter 14. Slurm
	14.1. Base Configuration
	14.2. Shared State Location
	14.3. Miscellaneous Tuning
	14.4. MariaDB security hardening
	14.5. Bootstrap
	14.6. Configuration deployment

	Chapter 15. Frontend and compute nodes
	15.1. Diskless image generation
	15.2. Boot nodes

	Chapter 16. Optional features
	16.1. Tuning
	16.2. Firewall
	16.3. Kerberos
	16.4. Internal APT repository
	16.5. Storage Multipath
	16.6. Monitoring
	16.7. Metrics
	16.8. HPCStats
	16.9. Slurm WCKeys
	16.10. Slurm-web REST API
	16.11. NFS High-Availability
	16.12. Slurm power management

	Bootstrap procedures
	Chapter 17. LDAP bootstrap
	Chapter 18. MariaDB/Galera bootstrap
	Chapter 19. SlurmDBD bootstrap
	Chapter 20. Ceph
	20.1. Ceph Deploy
	20.2. Mon
	20.3. OSD
	20.4. CephFS

	Chapter 21. NFS HA bootstrap

	Production procedures
	Chapter 22. MAC address change
	Chapter 23. Password/keys changes
	23.1. Root password
	23.2. Root SSH key
	23.3. SSH host keys
	23.4. Eyaml keys
	23.5. Internal repository encoding key
	23.6. Replication account password
	23.7. Monitoring certificates
	23.8. Munge key
	23.9. Repo keyring
	23.10. MariaDB users

	Chapter 24. Administration node re-installation
	Chapter 25. Service node re-installation
	Chapter 26. Network Boot and Installation Tuning
	26.1. iPXE ROM
	26.2. Bootmenu Entries
	26.3. Debian Installer Environment
	26.4. Alternate Partition Schemas

	Chapter 27. Frontend access
	27.1. Draining

	Chapter 28. NFS HA
	28.1. Starting a node
	28.2. Manual Fail Over

	Chapter 29. Services
	29.1. Packages Caching purge

	Chapter 30. Virtual Machines
	30.1. Deleting a Virtual Machine

